
 
International Journal of Data Science and Analysis 
2023; 9(3): 60-66 
http://www.sciencepublishinggroup.com/j/ijdsa 
doi: 10.11648/j.ijdsa.20230903.12 
ISSN: 2575-1883 (Print); ISSN: 2575-1891 (Online)  

 

Bayesian Spatio-Temporal Models for the Incidence of 
Malaria Using Time Dependent Covariates 

Evalyne Nduvi Musyoka
*
, Samuel Mwalili, Boniface Malenje 

Department of Statistics and Actuarial Sciences, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya 

Email address: 

 
*Corresponding author 

To cite this article: 
Evalyne Nduvi Musyoka, Samuel Mwalili, Boniface Malenje. Bayesian Spatio-Temporal Models for the Incidence of Malaria Using Time 
Dependent Covariates. International Journal of Data Science and Analysis. Vol. 9, No. 3, 2023, pp. 60-66.  
doi: 10.11648/j.ijdsa.20230903.12 

Received: October 23, 2023; Accepted: November 3, 2023; Published: November 11, 2023 

 

Abstract: This research study focuses on the Spatial and temporal Modelling of malaria incidences in Kenya, taking into 
account Time- dependent covariates. Malaria remains a significant public health concern in Kenya, with varying rates of 
infection across its 47 counties. Environmental factors such as temperature, rainfall, humidity and elevation play a crucial role 
in influencing Malaria transmission. Despite numerous malaria control efforts and initiatives the burden of the disease persist. 
The main objective of this study was to formulate Bayesian Spatio-temporal models for malaria incidence, with a particular 
emphasis on incorporating time-dependent covariates. The availability of data collected over time from various counties, as 
provided by the malaria project Atlas, was essential for achieving this goal. The Besag-York-Molli ́e (BYM) Spatio-temporal 
Model were formulated and implemented using Bayesian approach. Bayesian inference technique, coupled with Markov Chain 
Monte Carlo (MCMC) algorithms, was used to fit the models to the data. We also conducted convergence diagnostic of 
MCMC algorithm in order to check if the algorithm has converged and how reliable the posterior estimates are. In the analysis 
under Bayesian model choice and comparison of spatio-temporal model, spatial model with time dependent covariates and 
Spatio-temporal model with time dependent covariate were fitted. We found out that Spatio-temporal model with Time 
Dependent covariates was the best model. The resulting model and maps will be valuable for identifying disease hotspots, 
allocating resources for disease prevention and mitigation, and guiding policy decisions to reduce the burden of malaria. To 
ensure the validity of the Bayesian analysis, MCMC diagnostics were applied, including the Geweke Test, Gelman-Rubin 
statistics, and trace plots. These tests confirmed that the MCMC chains had converged to a common distribution, indicating the 
reliability of the obtained results. 

Keywords: Spatial Model, Spatio-Temporal Model, MCMC Convergence, Gelman Rubins Statistics, Malaria-Incidences,  
Geweke Test 

 

1. Introduction 

Malaria remains one of the deadliest infections in the 
world. It is a mosquito-borne protozoan disease that is caused 
by Plasmodium parasites. These parasites exist in five species: 
Plasmodium falciparum, P. malariae, P. ovale, P. vivax, and 
P. knowlesi [3]. It is estimated that malaria is a risk to almost 
half of the world’s population in nearly 100 countries and 
territories [6]. There were estimated 247 million cases of 
malaria in 2021 reported in 84 malaria-endemic countries [9]. 
It resulted in approximately 619,000 deaths during the same 

year. The statistics show an increase in malaria from 245 
million in 2020. Most of the increase in the cases are from 
countries in the African region. 

Over the years, tremendous steps have been taken to 
enhance malaria control and research programs. 
Organizations like the World Health Organization (WHO) 
and Global Technical Strategy (GTS) in the past years 
stipulated a sum of $6.4 billion annually to achieve a 90% 
decrease in malaria incidences and mortality rates by 2023 
[8]. There has been the use of intervention efforts, including 
indoor residual spraying (IRS), artemisinin-based 
combination therapy (ACT), and insecticide-treated bed nets 
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(ITNs) [3]. However, there are still many incidences despite 
these investments, among other eradication strategies that the 
WHO initiated [8]. 

Globally, malaria cases incidence (cases per 1000 
population at risk) reduced from 82 in 2000 to 52 in 2019 [9]. 
Later the incidence increased to 59 in 2020. Further, between 
2020 and 2021, there was no change in case incidence. The 
change in 2020 came from the COVID-19 pandemic, which 
disrupted services worldwide. COVID-19 pandemic 
disruption resulted in an estimated additional 13.4 million 
cases globally between 2019 and 2021. 

Kenya is in Eastern Sub-Saharan Africa, and its malaria 
incidence is also high. Malaria in Kenya is a risk to about 70% 
of the country’s 47 million inhabitants [11]. Besides, 13 
million people stay in endemic areas and 19 million in 
highland epidemic-prone and seasonal transmission areas [9]. 
The western Kenya region has the highest burden of infection. 
Malaria infection and transmission in this geographical 
region are mainly determined by altitude, temperature, and 
rainfall patterns. It leads to a variation of the malaria 
prevalence by season and across the geographical zones in 
the country. The disease accounts for about 30% of 
outpatients’ attendance in private and public health facilities 
across the country [11]. 

It is reported that Plasmodium falciparum causes the most 
severe form of the disease. This parasite accounts for 99% of 
infections in Kenya. Also, it is home to four Plasmodium 
parasites that infect humans. The number of malaria cases 
varies across the years. The malaria incidence cases are 
approximated to averagely being 6.8 million in 2000 and 3.4 
million in 2021 [9]. Malaria incidence cases are highly 
experienced in endemic regions like Lake Victoria and 
coastal regions [8]. This region has an ambient temperature 
suitable for malaria transmission. The region also 
experiences necessary and long seasonality of rainfall. 
Temperature, rainfall, and humidity are determinants of 
perennial transmission of malaria. 

Other regions that experience malaria incidences include 
the highland epidemic-prone areas, semi-arid, seasonal 
malaria transmission areas, and low-risk malaria areas (KMIS, 
2020). The western highland of Kenya is seasonal, and they 
have epidemic malaria events that favour climatic conditions 
favouring the sustainability of malaria. The temperatures 
experienced in the region are a minimum of 18°C. The 
temperatures are experienced during periods of short and long 
rains favouring sustainable breeding and sporogony, thus 
occasion malaria transmission. On the other hand, the 
semi-arid areas of the northeastern, southeastern, and northern 
parts of Kenya experience short periods of intense 
transmission of malaria during the rainfall season. During the 
events of normal rainfalls, the temperatures are usually high, 
and water pools are always available for breeding habitats of 
malaria vectors. Malaria can also be introduced in low-risk 
malaria areas if there are changes in the hydrological cycle due 
to climate change. These areas include the central highlands of 
Kenya, including Nairobi. 

Malaria is still a public health threat for locals and 

travelers globally in Africa, Kenya, and other 
malaria-endemic regions. There is still a high burden of 
infections despite the important role played by WHO GTS [8] 
and the Kenyan Ministry of Health [11] in scaling down 
malaria incidences. There is a need for more studies to be 
able to achieve the goal of eliminating malaria. Eradication 
of malaria would therefore mean a more healthy nation and 
so growth of the country’s social and economic status. There 
will be an achievement of sustainable development goals and 
universal health coverage [16]. It is also important in 
attaining Kenya’s vision 2030 and achieving the 
Government’s six pillars of bottom-up economic plan since 
Health care is among them. 

In order to prevent or cure the disease in the context of its 
epidemics, decision-makers need to be aware of the risk the 
epidemic in space and time [15, 2]. Understanding spatial 
and temporal distributions of a disease is often accomplished 
by applying statistical methods to surveillance data and 
generating a map that describes the variations in risk [10]. 
Spatial statistics provides tools to analyse spatially and/or 
temporally distributed data, capitalizing on the correlation 
between incidence to interpolate and delineate areas with 
high disease risk. Geostatistics is a powerful spatial 
technology which contributes immensely to prediction of 
random process distributed in space or time, and has 
increasingly been applied in epidemiological studies 
facilitating quantification of spatial features of disease’s 
transmission and its interpolation within the environment 
[13]. 

Despite the efforts that have been put in place, the burden 
of Malaria is still being felt at varied rate across many 
counties in Kenya. Several studies have shown that malaria 
infection is influenced by environmental factors such as 
temperature, rainfall, humidity and elevation. Even though 
there is quit a number of spatio-temporal models for malaria 
but they do not consider clustering and Time Dependent 
covariates. The main aim of this study is to formulate the 
spatio-temporal models for malaria incidence varying over 
time in Kenya using Time Dependent covariates. 

2. Study Methods 

2.1. Data and Study Variables 

The study obtained publicly available secondary Malaria 
data from The Malaria Atlas Project Data Platform.1 The 
platform provides malaria data at varying levels of detail to 
suite different needs. We will only consider the Plasmodium 
parasite data from Kenya. The main intervention is 
insecticide-treated bed nets (ITNs), which are a form of 
personal protection that has been shown to reduce malaria 
illness, severe disease, and death due to malaria in endemic 
regions the response variable of interest is number of newly 
diagnosed plasmodium falciparum malaria cases, on a given 
year, from 2010 to 2020. The Time Dependent covariates 
include; 

1) Insecticide-treated bed nets access 
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2) Insecticide-treated bed nets use. 

2.2. Spatial-Temporal Model 

We assumed that ��  represents the number of incidence 
cases of malaria in each county i, which follows a Poisson 
distribution. Let ��� , denote the number of Malaria incidence 
cases at country i and year t. Malaria data is available for 
different time periods t = 1, · · ·, T. The linear predictor ���, 
will be decomposed additively into components depending on 
space, time, or both. For the spatial component we will adopt 
the standard [1] model with a spatially unstructured u and 
structured component v. We thus consider a random effects 
model with mean η: We assume that 

���~��	
(���)                (1) 


��	��� = log	(���) + 
��(���)         (2) 


��	��� = 
��	(���) +	�� + ���� +	��� +	��� + ��   (3) 

Where the term �� , represents the effect of the ��� period, 
modelled as an autoregressive conditional random term. The 
unstructured random effectsuᵢ, i = 1, · · ·, nᵢ, are assumed to 
be independent mean-zero normally distributed with 
unknown variance  !" . To account for the fact that 
geographically close regions often have similar incidence 
rates the spatially structured component v is modeled as an 
intrinsic Gaussian Markov random field [14]. 

2.3. Spatial Model with Time Dependent Covariates 

We initially assumed that ��  represents the number of 
incidence cases of malaria in each county i, which follows a 
Poisson distribution. Since the covariates considered are 
area-specific and time-dependent they can be included in the 
model equivalent to the BYM. With time dependent covariate 
��� , the model is now given by 


��	��� = 
��(��) + 	�₀ + 	�� + �� + �����     (4) 

2.4. Spatio-Temporal Model with Time Dependent 

Covariates 

We introduce the effect of the ��� period �� , into the model, 
since the covariates considered are area-specific and 
time-dependent their inclusion in the model equivalent to the 
BYM: interaction among space and time random effects. With 
time dependent covariate ��� , the model is now given by; 


��	��� = 
��(���) + �� + �	� + �	� + �� + �����    (5) 

2.5. Bayesian Estimation Methods 

In Bayesian inference, the parameters within the likelihood 
model are allowed to be stochastic, that is, to have 
distributions. These distributions are called prior distributions 
and are assigned to the parameters before seeing the data. This 
allowance also makes the parameters in the prior distributions 
of the likelihood parameters to be stochastic. By so doing, 
hierarchical models are obtained. These models form the basis 
of inference under the Bayesian paradigm. The product of the 

likelihood (data) and the prior distributions for the parameter 
gives the so-called posterior distribution. This distribution 
describes the behavior of the parameters after observing the 
data and making the necessary prior assumptions. However, 
most disease mapping models are complex and the resulting 
posterior distributions are not analytically tractable. Hence it 
is often not possible to derive simple estimators for parameters 
such as the relative risk. In this case posterior distribution is 
obtained via posterior sampling i.e., using simulation methods 
to obtain samples from the posterior distribution which then 
can be summarized to yield estimates of relevant quantities. 
Markov chain Monte Carlo (MCMC) methods are a set of 
methods which use iterative simulation of parameter values 
within a Markov chain. The theory of MCMC was first 
developed as a tool for Bayesian posterior sampling starting in 
the early 1990s [17]. Then using Bayes theorem the posterior 
distribution of θ is given by: 

$(%|�) = '((|))×	'())
'(()              (6) 

Here p(θ) is the prior probability distribution of θ which 
represents the prior belief on θ; p(y|θ) is the likelihood 
function which specifies the distribution of the data y given 
the prior belief; p(y) is the marginal distribution of the data 
which is independent θ and is treated as just a normalization 
constant. Thus the posterior distribution of θ is often stated as: 

$(%|�) 	∝ 	�(�|%	 × 	�(%))         (7) 

Markov Chain Monte Carlo 

The aim of MCMC procedures is to generate random 
variables with stationary distributions that are similar to 
certain target distributions having probability distribution 
function π(y). The target distributions in the Bayesian 
inference technique is often the posterior distribution p(θ|y). 

Gibbs Sampler 

Gibbs Sampler was first developed by Geman and Geman 
(1984) for Bayesian image re-construction and later proposed 
by Gelfand and Smith (1990) as a sampling procedure for 
simulating marginal distributions in a Bayesian estimation 
context. This algorithm is structured as follows [7]. 

Set the initial values %� = (%,(�) ,…, %'(�) ), for all the 
parameters and set t=1, 

Draw %�=(%,(�),…,%'(�))’ by 

%,(�) ∼ p(θ₁|%"(�/,),….,%'
	�/,)) 

%"(�) ∼ p(θ₂|%,(�/,),….,%'
	�/,)) 

%1(�) ∼ p(%1 |%"(�/,),….,%'/,
	�/,)) 

Increase t by 1 that is let %�2,=(%,(�2,), …,	%'(�2,)) 
The Gibbs Sampler has attracted a lot of interest and 

attention in disease mapping and other epidemiological 
research due to the accessibility of cutting-edge software like 
Win BUGS, which has enabled its implementation and 
application in a variety of issues conceivable. 
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2.6. MCMC Convergence 

Convergence is diagnosed when the chains have ‘forgotten’ 
their initial values, and the output from all chains is 
indistinguishable. Geweke proposed a convergence 
diagnostic for Markov chains based on a test for equality of 
the means of the first and last part of a Markov chain (by 
default we use the first 10% and the last 50%) [5]. Geweke’s 
approach involves calculation of the sample mean and 
asymptotic variance in each window, the latter being 
determined by spectral density estimation. His convergence 
diagnostic Z is the difference between these two means 
divided by the asymptotic standard error of their difference. 
As the chain length → ∞, the sampling distribution of the 
chain has converged. Hence values of Z → (0, 1) which fall 
in the extreme tails of a standard normal distribution, ±2, 
suggest that the chain has not fully converged. 

Geweke and Gelman proposed a general approach to 
monitoring convergence of MCMC output in which two or more 
parallel chains are run with starting values that are over 
dispersed relative to the posterior distribution [4, 5]. 
Convergence for multiple chains may be assessed using 
Gelman-Rubin scale factor reduction factors that compare 
variation of the samples parameter values within and between 
chains. It is based on a comparison of within-chain and 
between-chain variances, and is similar to a classical analysis of 

variance. To measure the variability of sample %3�, within the 
chain (j = 1, · · ·, J) define 

43 = ∑ 6	)78/) ֿ◌9:
;/,

<2;�=<2, 	           (8) 

Over M iterations after an initial burn-in of T iterations, 
where %̅	is the average of %3(�)	(t = T + 1, · · ·, T + M). Ideally, 
the burn-in period is the initial set of samples where the effect 
of initial parameter values tails off. Convergence is therefore 
assessed from T + 1 to T + M. Variability within chains 4?	is 
the average of Vj‘s, between chain variance is measured by 

4@ = ∑ A	%̅3 	B % ֿ◌C"<2;�=<2,            (9) 

Where %̅ is the average of %̅3’s. The scale factor reduction 
(SRF) compares a pooled estimator of (θ), given by 4D	 =
EF
; +	;EG

;/, , to	4?. More specifically, SRF = HEI
EG	with values 

under 1.2 [2] indicating convergence. 

3. Results 

The figure below represents malaria cases distribution in 
Kenya from 2010 to 2020. 

Observed malaria incidence cases maps 

 

Figure 1. Shows how malaria inciden cases are distributed among Kenyan counties from 2010 to 2020 respectively. 
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3.1. Spatial and Spatio Temporal Output 

Table 1. Parameter estimates from spatio-temporal model. 

Parameter Estimate SD 2.5% 97.5% 

β₀ -0.2255 0.3106 -0.5585 -0.1169 
β₁ -0.0009 0.0003 -0.0014 -0.0002 
β₂ 0.0009 0.0004 0.0004 0.0022 
 '  0.3496 0.1073 0.1941 0.5975 
 !  0.5521 0.0277 0.5035 0.6077 
 E  3.8520 0.4175 3.1400 4.7660 

In table 1, we considered the time effect, covariates and 
the county random effect. In the outputs subscript 1 and 2 
represents access to ITN and use of ITN respectively. Since 
the value of  E  is large, this implies that the random 
variability are related to the spatial location of the data points. 
Malaria cases are varying from one county to another and the 
malaria cases of one county affect the malaria cases of the 
neighbouring county. However the coefficient of  ' is small 
this implies that there is no temporal variability of malaria 
cases over time. Access to ITN has a negative coefficient 
which shows that access to ITN helps to mitigating malaria 
cases. 

Table 2. Parameter estimates from spatial model with TVC. 

Parameter Estimate SD 2.5% 97.5% 

β₀ -2.3170 2.0470 -4.4050 -0.2544 
β₁ -0.0005 0.0015 -0.0011 -0.0001 
β₂[₁] 0.0470 0.0552 -0.0093 0.1034 
β₂[₂] 0.0382 0.0428 -0.0060 0.08367 
β₂[₃] 0.0322 0.0346 -0.0031 0.0678 
β₂[₄] 0.0381 0.0358 0.0010 0.0751 
β₂[₅] 0.0354 0.0307 0.0032 0.0664 
β₂[₆] 0.0301 0.0277 0.0018 0.0585 
β₂[₇] 0.0315 0.0299 0.0007 0.0636 
β₂[₈] 0.0283 0.0288 -0.0012 0.0576 
β₂[₉] 0.0276 0.0288 -0.0032 0.0573 
β₂[₁₀] 0.0334 0.0338 -0.0013 0.0680 
β₂[₁₁] 0.0575 0.0575 -0.0017 0.1164 
 Q  0.9063 0.3588 0.5157 1.3340 
 E  3.6980 0.4597 2.9130 4.7130 

Table 2 reveals the influence of covariates on malaria 
incidences over time. A positive correlation exists between 
the use of insecticide-treated bed nets (ITN) and malaria 
cases, indicating that regions with higher malaria burdens 
tend to employ ITNs more frequently. Conversely, access to 
ITNs displays a negative coefficient, suggesting that areas 
with better ITN availability experience lower malaria 
incidence rates. The substantial variance in the structured 
component underscores the strong spatial dependence of 
malaria cases between neighboring counties. In essence, this 
highlights the role of ITNs in malaria prevention and the 
significant spatial dynamics of malaria transmission. 

Table 3. Parameter estimates from spatio-temporal with TVC. 

Parameter Estimate SD 2.5% 97.5% 

β₀ -2.3820 2.3670 -4.7670 0.0173 
β₁ -0.0002 0.0012 -0.0017 0.0013 
β₂[₁] 0.0428 0.0535 -0.0129 0.1000 
β₂[₂] 0.0358 0.0445 -0.0103 0.0825 

Parameter Estimate SD 2.5% 97.5% 

β₂[₃] 0.0481 0.0235 0.0236 0.0721 
β₂[₄] 0.0445 0.0233 0.0193 0.0690 
β₂[₅] 0.0255 0.0402 -0.0154 0.0663 
β₂[₆] 0.0295 0.0300 -0.0011 0.0603 
β₂[₇] 0.0286 0.0315 -0.0036 0.0607 
β₂[₈] 0.0277 0.0303 -0.0034 0.0587 
β₂[₉] 0.0371 0.0229 0.0135 0.0606 
β₂[₁₀] 0.0515 0.0215 0.0294 0.0734 
β₂[₁₁] 0.0515 0.0677 -0.0183 0.1214 
 '  1.0770 0.2715 0.6829 1.7260 
 Q  0.7356 0.1298 0.5618 0.9158 
 E  3.8000 0.4249 3.0770 4.7450 

In this model we considered the time effect, 
time-dependent covariates and the county random effect. 

Table 3 shows that the use of insecticide-treated bed nets 
(ITN) is positively associated with malaria cases, indicating that 
regions with higher malaria burdens rely more on ITNs. 
Conversely, access to ITNs has a negative correlation, implying 
that areas with greater ITN availability experience fewer malaria 
cases. The substantial temporal variance suggests significant 
fluctuations in malaria cases over time, while the high structural 
random effect variance underscores the influence of neighboring 
counties on each other's malaria incidences. 

3.2. Bayesian Model Comparison 

The analysis gave the following parameter estimates and 
the goodness of fit measures, as presented in Table 3. 

Table 4. Bayesian model comparison. 

Model RS   RT   UR  DIC 

Spatio-temporal 
model 

6756.524 6240.678 515.846 7272.370 

Spatial model 
withTDC 

6755.206 6238.602 516.604 7271.810 

Spatio-temporal 
Model with TDC 

6753.570 6236.630 516.940 7270.510 

For model comparison, the effective number of parameters 
(VW ) and the deviance information criterion (DIC) were 
computed. The best fitting model is one with the smallest 
DIC value. From the DIC values in Table 3, it is clear that 
models with time dependent covariates is the best model 
since it has the smallest DIC. This confirms that Bayesian 
spatio temporal model with time-dependent covariate 
produces better results. 

3.3. MCMC Convergence 

1) Geweke Test 
Geweke test was performed on the two sets of Markov 

Chain Monte Carlo chains. The test is used to assess 
convergence of Markov Chain Monte Carlo chains. 

Table 5. Results from Geweke Test. 

chain 1 output 
Fraction in 1ˢᵗ window = 0.1 
Fraction in 2ⁿͩ window = 0.5 
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Table 6. Results from Geweke Test. 

chain 2 output 
Fraction in 1ˢᵗ window = 0.1 
Fraction in 2ⁿͩ  window = 0.5 

The test provides a fraction for two windows. In this case, 
the fraction is 0.1 in the first window and 0.5 in the second 
window for both Chains. This shows that the algorithm used 
converged. 

2) Gelman-Rubins statistics 

Table 7. Gelman & Rubin's variance inflation factor. 

Parameter Point est. Upper C.I. 

�₁  1.00 1.00 
�₂X,,Y  1.00 1.00 
 '  1.02 1.02 
 Q  1.01 1.01 
 E  1.00 1.00 

From Table 5, it appears that for all parameters, the upper 
bound of the inflation factor is less than 1.1. There is no large 
deviation for the variance within-chain and between chain. 
This indicates that there’s high confidence that the algorithm 
has converged. 

3) Trace Plots. 

 

Figure 2. History of the MCMC chain for variance of parameter. 

Figure 2, represents trace plot that displays the evolution 
of a specific parameter from two different Markov Chain 
Monte Carlo (MCMC) chains over iterations. The trace for 
the two chains is seen simultaneously in different colors. The 
output from this function can provide insights into the 
convergence of the chains. We can thus conclude that both 
chain1 and chain 2 have converged to a common distribution. 

The relative Risk map 

The relative risk map highlights the varying incidence of 
malaria across different counties. In areas with an increased 
risk of malaria, the incidence of the disease is notably higher. 
These regions are marked in dark blue colors on the map. 
Overtime most counties kept a constant incidence of malaria.

 

Figure 3. Shows how the risk of malaria is distributed among Kenyan counties from 2010 to 2020 respectively. 
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4. Conclusion 

This study explored the significance of disease maps in 
spatial epidemiology, specifically focusing on malaria 
incidence in Kenyan counties from 2010 to 2020. These 
maps serve various purposes, including identifying 
high-incidence areas and optimizing healthcare resource 
allocation. The visual analysis revealed the dynamic 
nature of malaria incidence across years, with numerous 
counties experiencing consistently high rates. Relative risk 
maps highlighted the variations in risk levels among 
counties, singling out Kwale, Homa Bay, Kisumu, Siaya, 
Busia, and Mombasa as high-risk areas. To model spatial 
random effects, a Conditional Autoregressive (CAR) prior 
was used, and Bayesian analysis was carried out using 
WinBUGS. Furthermore, a spatio-temporal CAR model 
was employed to account for both spatial and temporal 
dependencies and capture interactions among various 
influencing factors. 

We examined malaria in Kenya, emphasizing the 
significance of spatio-temporal models with time-dependent 
covariates. It shows that malaria incidence positively 
correlates with insecticide-treated bed net (ITN) use, while 
areas with ITN access experience lower incidence. Among 
three models compared using Deviance Information 
Criterion, the spatio-temporal model with time-dependent 
covariates was the most effective. Markov Chain Monte 
Carlo diagnostics confirmed convergence and result 
reliability. The study underscores the importance of proper 
modeling to manage malaria, with ITN access and use 
playing key roles. 

This research contributes to a better understanding of 
the spatial distribution of malaria in Kenya and supports 
evidence-based public health interventions. The increased 
malaria risk coincided with lower ITN coverage, 
emphasizing the importance of promoting ITN use in 
high-risk malaria areas for effective disease prevention. 
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