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Abstract: Avocado (Persea americana) farming in East Africa has expanded since recent, contributing significantly toward 

economic growth and livelihood for small-scale farmers. However, insects attacking avocado fruits reduce fruit quality and size, 

causing massive losses. Previous studies have identified key avocado insect pests, their temporal population patterns and how 

landscape vegetation productivity influences their population dynamics. This research analyzed insect count data collected on 

Bactrocera dorsalis and Ceratitis spp. in an avocado plantation in Thika, Kenya over a successive period of time, as part of pest 

management. These data are characterized by overdispersion due to aggregation behaviour of the insects in their habitat and 

serial correlations since the count data were collected over a successive period of time. Analyzing these data becomes 

complicated because of overdispersion and the serial correlation in the data. In this study, we explored variants of generalized 

linear models (GLMs) with a sinusoidal component over time; and with and without timescale decomposition of covariates 

(weather variables). All GLM variants were fitted assuming the negative binomial distribution to account for overdispersion. 

Based on the Akaike information criterion (AIC), GLMs with decomposed covariates had lower AIC values than GLMs without 

decomposed covariates for both B. dorsalis and Ceratitis spp., and therefore GLMs with a sinusoidal component and 

decomposed covariates under negative binomial distribution were the best choice for these data. The contribution of the 

preceding weekly insect pest counts in all models was statistically significant. The study established that both abiotic and biotic 

factors drive insect pest infestation. 
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1. Introduction 

Insect pest count data, most of which is non-Gaussian 

distributed, is increasingly being collected in various research 

fields [1, 2]. Insect pest counts collected over a successive 

period of time are characterized by overdispersion and serial 

correlations, making modeling of such data complicated [3] 

since time series modeling techniques are adopted for 

Gaussian distributed data. Commonly used techniques for 

modeling Gaussian time series data include Box and Jenkins 

models, which capture the temporal correlation structure of 

time series [4, 5]. If adopted for the case of time series count 

data, Box and Jenkins models result in biased estimates, and 

fail to capture the distribution of count data thus leading to 

poor models [6]. In addition, when modeling count time series 

data with a low number of observations, Box and Jenkins 

models result in inadequate performance. Box and Jenkins 

models also do not account for overdispersion or excess zeros in 

the time series count data, which lead to biased estimates in the 

models if not adequately accounted for. It is therefore important 

to model count time series data applying adequate statistical 

approaches that take into account the underlying conditional 
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distribution, possibilities of excess zeros, overdispersion, 

positive or negative associations among the counts, and serial 

dependencies [4, 7, 8]. 

Efforts to overcome the limitations of Box and Jenkins models 

in modeling count time series data resulted in the use of the 

integer-valued autoregressive (INAR) class of Poisson models 

[9-10]. These models apparently perform better in modeling count 

time series data but are limited in dealing with seasonality and 

unobserved heterogeneity [5]. Machine learning algorithms such 

as artificial neural networks (ANN) and long-short term memory 

(LSTM) networks have been acknowledged as powerful in 

modeling count time series data, and do not require consideration 

of the conditional distribution of the outcome variable [11]. 

Recently, generalized linear models (GLMs), which are a 

generalization of the ordinary linear model, have been 

explored for allowing response variables to assume a 

non-Gaussian distribution, and for extension to modeling 

count data recorded over a period of time. GLMs have over the 

years been applied in modeling cross-sectional count data, 

allowing the linear model to be related to the response variable 

via a link function. In such contexts, the dynamics are not of 

primary concern, but heterogeneity [12]. Preliminary reports 

on use of GLMs in modeling count data collected over a 

period of time, where the conditional distribution of the 

response variable follows Poisson distribution, have revealed 

that they do so in a parsimonious manner [6]. 

This paper focuses on aggregated and overdispersed count 

data that was collected over a period of time, through scouting 

of pests (Bactrocera dorsalis and Ceratitis spp.) in avocado 

(Persea americana) fields at Kakuzi PLC (Thika, Kenya). The 

resulting time series data is characterized by heterogeneity of 

variance, serial correlations and delayed effects of the 

predictor variables. In modeling insect count time series data, 

a study forecasted whitefly and aphid populations using an 

autoregressive integrated moving average (ARIMA) [13]. 

ARIMA with exogenous variables (ARIMAX) was used for 

modelling and forecasting incidence of greenhouse whitefly 

(Trialeurodes vaporariorum) in green houses [11]. The 

approaches used were for a Gaussian distributed data. 

Most researchers adopted GLMs in modeling time series 

data in the context of epidemiology, where the conditional 

distribution of the response variable follows a Poisson 

distribution. Examples include applying GLMs in analyzing 

non-Gaussian time series data, focusing on incidence of 

respiratory syncytial virus infection, with Poisson distribution 

as the underlying conditional distribution of the response 

variable [14]. On the contrary, insect count data, collected 

over a period of time, are characterized by overdispersion, 

hence they are not Poisson-distributed. Studies that used 

machine learning algorithms in predictive modeling of pest 

population include prediction of host-parasitoid population 

using ANN [15], prediction of the severity of Spodoptera 

litura on groundnuts using ANN [16], and forecasting crop 

attacks by pest using long short-term memory (LSTM) [17]. 

Studies on avocado farming in Kenya have reported 

presence and abundance of tephritid fruit flies, especially B. 

dorsalis and various Ceratitis spp. (Ceratitis cosyra, Ceratitis 

capitata and Ceratitis rosa) [18-20]. In addition, climatic 

factors and avocado plant physiology stages influence insect 

pest species population densities [16, 19]. Temperature was 

identified as a key abiotic factor influencing both the 

distribution and the population dynamics of B. dorsalis 

through affecting their development, survival and 

reproduction [21]. Varying temperature was reported to have a 

negative effect on the developmental stages of B. dorsalis [22]. 

Regarding rainfall effect on insect pests, rainfall did not have a 

significant effect on emergence and survival of the tephritid 

fruit fly Anastrepha spp. attributing yearly population 

fluctuations to other factors such as fruiting physiology stages 

of hosts plants [23]. An increase in fruit fly populations was 

reported during the rainy season and fruiting phenology of 

hosts, while Ceratitis spp. population densities increased 

during fruiting of hosts plants and relatively dry period [22]. 

This study explored the variants of GLMs that can be used to 

analyse overdispersed fruit fly count data to determine the 

factors that drive insect infestation. 

2. Material and Methods 

2.1. Available Data 

Data comprised of weekly trap counts of B. dorsalis and 

Ceratitis spp. collected from two orchards, A and B, in an 

avocado plantation at Kakuzi PLC. Two traps, one for each taxon, 

were placed equidistant and at the same elevation within a given 

orchard. Traps (McPhail traps, Insect Science Company, 

Tzaneen, South Africa) had been baited with CC EGO Lure 

(Kenya Biologics, Nairobi, Kenya) and ME Lure (Kenya 

Biologics) for B. dorsalis and Ceratitis spp., respectively. We 

further used the following weather variables: daily total rainfall 

(mm), daily average temperature (°C) and daily relative humidity 

(%) as the predictor variables of weekly trap counts. These 

variables were processed into weekly total rainfall (mm), weekly 

average temperature (°C) and weekly average relative humidity 

(%) to align with the weekly measure of insect pest counts. 

2.2. Statistical Modeling 

GLMs were used to model the data. As described by Nelder 

and Wedderburn (1972), GLMs contain the following three 

components [24]. The random component specifies the 

conditional distribution of the response variable Yi (for i
th

 of 

the n independently sampled observations) given the predictor 

variables in the model. The systemic component includes the 

linear function of the predictors, and is defined as; 

η� = � + ����� + �����+. . . +�
��
          (1) 

and finally, the linearizing link function denoted as g(.), which 

transforms the expectation of the response variable E(Yi)=� 

to k linear predictors and is defined as; 

�
��� = η� = � + ����� + �����+. . . +�
��
      (2) 

To account for overdispersion, the conditional distribution 

for this case was considered as a negative binomial 
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distribution. Negative binomial distribution belongs to the 

GLM family, and is an extension of Poisson distribution that 

allows for modeling overdispersed count data, where the 

Poisson mean is itself a random variable, distributed 

according to a Gamma distribution. The probability mass 

function of negative binomial distribution is defined as; 

�
�� = �|�; �, ��� = Γ
����
Γ
��Γ
����  � �

����
�

�
� ��

�� ��
�

�
    (3) 

with E(Yt)=�� and Var(Yt)=�� + ���

�  where � is the dispersion 

parameter and �� is the mean at time t. Insects counts are often 

fitted fairly well by the negative binomial distribution [25]. 

2.2.1. Definition of Models 

(i). GLM with Sinusoidal Component 

A GLM with sinusoidal component is defined as follows [14]; 

log � = �# + ���$� + ∑ ∑ ∑ �
&�
�$&�

'
&(#

)

(�

*
�(� + η �+,- .�/�

0 1 + η�23+ .�/�
0 1                (4) 

where Yt, t=1,2,....,n is the insect pest count recorded per 

week at corresponding time t. �� is the mean count for time t. 

β0 is the intercept, α is coefficient of the lagged weekly pest 

counts by time t-1. X(t−l)k denotes the predictor variable; βkl is 

the coefficient of the predictor variable with k=1,2..,.m 

covariates, l=0,1...q is the distributed lags while q is the 

maximum lag and t=1,...n are the time points. η1 and η2 are the 

coefficients of the sine and cosine functions, respectively, 

while T is the number of time periods described by one cosine 

function over the interval [0, 2π]. 

(ii). GLM with Sinusoidal Component and Decomposed 

Predictors 

The second model, the GLM with sinusoidal component 

incorporating decomposition, is defined as; 

log � = �# + ���$� + ∑ ∑ ∑ ∑ �
4&�
�$&�
4
'
&(#

5
4(#

)

(�

*
�(� + - �23+ .�/�

0 1 + -�+,- .�/�
0 1             (5) 

where Yt, t=1, 2,..., n is the insect pest counts recorded per week 

at corresponding time t. ��  is the mean for time t. β0 is the 

intercept, α is the coefficient of the lagged weekly insect pest 

species counts by time t-1. X(t−l)ks denotes the decomposed 

predictor variable; βksl is the coefficients of the decomposed 

predictor variables with k=1, 2, …, m covariates, s=1, 2,..., r is 

the decomposition, l=0,1,..., q is the distributed lags while q is the 

maximum lag and t=1,...n are the time points. η1 and η2 are the 

coefficients of the sine and cosine functions, respectively, while T 

is the number of time periods described by one cosine function 

over the interval [0, 2π]. To decompose the covariates to trend, 

seasonal and remainder components, moving average (MA) was 

used, which is a common linear filter defined as; 

67� = �
) ∑ ���8



8($
                (6) 

where 67�  is the estimated trend at time t, m is the order 

of MA and m=2k+ 1. The estimate of the trend-cycle at 

time t is obtained by averaging values of the time series 

within k periods of t. The estimate of seasonal components 

is; 

+̂� = �� − 67�                     (7) 

while the random component is obtained by; 

;̂� = �� − 67� − +̂�                  (8) 

2.2.2. Estimation of Parameters 

From the log-likelihood of the negative binomial extended 

GLM, defined as; 

< = ∑ ��� log
��� + �<3�
�� − 
� + ��� log
� + ��� + <3� �Γ
����
Γ
�� � − log 
��!��*

�(�             (9) 

the maximum likelihood estimates of β and �, that is �>  

and �?, in the GLM were estimated simultaneously, by 

sequential iterations solved by Newton–Raphson iterative 

scheme, using the iterated weighted least squares (IWLS) 

algorithm. 

2.2.3. Model Evaluation 

The models were evaluated using the Akaike information 

criteria (AIC), which accounts for the likelihood of the 

observations as well as the number of parameters in the model. 

AIC is defined as; 

@AB = −2DE7F + 2G             (10) 

where K is the number of estimated parameters in the model 

and E7 is the maximum value of the likelihood function for 

the model [26]. 

Further, deviance squared (D
2
), proposed by Guisan and 

Zimmermann [27], was used to determine the amount of 

deviance accounted for by each GLM. D
2
 is obtained by; 

H� = 1 − *J&& KL��M*NL
5L4�KJM& KL��M*NL           (11) 

where null deviance is the GLM’s null deviance while residual 

deviance is the GLM’s residual deviance. 

The models were implemented in R software version 4.0.5 

[28], using the “MASS” package [29], “dlnm” package [30] 

and “lubridate” package [31]. 

3. Results 

3.1. Assessment of the Fitted Generalized Linear Models 

We fitted the variants of GLM with sinusoidal components 

over time, then compared their performances. 
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3.1.1. Model for B. dorsalis 

The results of the GLMs are presented in Table 1. The 

GLMs were fitted for the B. dorsalis counts in orchard A, 

without and with decomposition of covariates, achieved a D
2
 

of 0.489 and 0.712 respectively. The corresponding AIC 

values were 1120.7 and 1032.1, respectively, thus GLM with a 

sinusoidal component, and incorporating timescale 

decomposition of covariates, fitted better to B. dorsalis count 

data. The lagged B dorsalis counts had a significant effect on 

weekly B. dorsalis counts at 5% significance level. Rainfall 

and average temperature variables significantly and negatively 

affected the weekly B. dorsalis counts. Avocado plant 

physiology stages of fruit set and rapid expansion, development 

and harvesting had positive beta coefficients, implying positive 

effects on the weekly counts, though statistically insignificant. 

The results could be due to increased frequency in 

implementation of pest control strategies, especially during 

such stages, to ensure that insect counts remained below the set 

threshold. Relative humidity affected the weekly B. dorsalis 

counts significantly at 10% significance level. 

Table 1. Model parameter estimates for generalized linear models with sinusoidal components and decomposed covariates and without decomposition of 

covariates for B. dorsalis in orchard A. 

Covariate 

Orchard A 

GLMa GLMb 

Estimate (se) Estimate (se) 

(Intercept) 1.717 (0.832) * 7.437 (1.904) *** 

B. dorsalis counts (t-1) 0.006 (0.002) *** 0.006 (0.001) *** 

Avocado plant physiology cycle     

 

Flowering and fruitset -0.158 (0.517) -0.910 (0.472). 

Fruitset and rapid expansion 1.014 (0.689) 0.271 (0.744) 

Fruit development 0.710 (0.671) 0.845 (0.765) 

Harvesting 0.018 (0.533) 0.474 (0.461) 

Rainfall -0.487 (0.783) - - 

Average temperature -0.918 (1.099) - - 

Relative humidity 1.592 (0.875). - - 

Rainfall (seasonality) - - -1.199 (0.640). 

Rainfall (trend) - - -7.283 (0.872) *** 

Average temperature (seasonality) - - 0.165 (1.097) 

Average temperature (trend) - - -15.475 (3.567) *** 

Relative humidity (seasonality) - - 0.656 (1.035) 

Relative humidity (trend) - - -3.541 (3.763) 

Sinusoidal component     

 

F(t) -0.003 (0.003) 0.058 (0.016) *** 

Sine��πO
0 � -0.893 (0.593) 0.901 (1.009) 

Cosine��πO
0 � -0.038 (0.557) 1.288 (0.651) * 

F(t): Sine��πO
0 � 0.008 (0.005 0.004 (0.012) 

F(t): Cosine ��πO
0 � 0.010 (0.007) 0.012 (0.008) 

Null deviance 407.98, df=170 670.10, df=170 

Residual deviance 192.48, df=157 174.84, df=154 

AIC 1120.7 1032.1 

Theta 0.629 (0.080) 1.142 (0.157) 

2 x log-likelihood 1090.749 -996.111 

D-Squared 0.489 0.712 

aModel without covariates decomposition. bModel with covariates decomposition. The values in parentheses are standard errors of model parameter estimates. 

Significance: ***p < 0.001, ** p < 0.01 *p <0.05 

Table 2 shows parameter estimates for generalized linear 

models in orchard B. The GLMs fitted for the B. dorsalis 

counts, without and with decomposition of covariates, 

achieved a D
2
 of 0.620 and 0.633 respectively. The 

corresponding AICs were 956.62 and 956.35, respectively, 

implying that there was slight improvement following use of 

decomposed covariates. The lagged B. dorsalis counts and 

relative humidity significantly affected the weekly B. dorsalis 

counts positively at 5% significant level. Avocado plant 

physiology stages had no significant effect on the weekly 

counts, which could be attributed to frequent control of insect 

pests to ensure that they do not surpass the set threshold. 

Table 2. Model parameter estimates for generalized linear models with sinusoidal components and decomposed covariates and without decomposition of 

covariates for B. dorsalis in orchard B. 

Covariates 

Orchard B 

GLMa GLMb 

Estimate (se) Estimate (se) 

(Intercept) 2.431 (0.773) ** 8.663 (2.993) ** 

B. dorsalis counts (t-1) 0.008 (0.003) ** 0.006 (0.003) * 
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Covariates 

Orchard B 

GLMa GLMb 

Estimate (se) Estimate (se) 

Avocado plant physiology cycle     

 

Flowering and fruitset -1.332 (0.393) *** -1.201 (0.441) ** 

Fruitset and rapid expansion 0.451 (0.324) 0.053 (0.520) 

Fruit development 0.365 (0.410) 0.590 (0.459) 
Harvesting 0.063 (0.363) 0.722 (0.378). 

Rainfall -0.186 (0.658) - - 

Average temperature -0.218 (0.883) - - 
Relative humidity 2.584 (0.786) ** - - 

Rainfall (seasonality) - - -1.874 (0.662) ** 
Rainfall (trend) - - -7.281 (12.744) 

Average temperature (seasonality) - - 1.022 (0.948) 

Average temperature (trend) - - 12.738 (7.561). 
Relative humidity (seasonality) - - 0.699 (0.833) 

Relative humidity (trend) - - 1.015 (8.540) 

Sinusoidal component     

 

F(t) -0.023 (0.004) *** -0.117 (0.084) 

Sine��πO
0 � -2.422 (0.507) *** -3.082 (1.322) * 

Cosine��πO
0 � -0.944 (0.601) -7.376 (8.837) 

F(t): Sine��πO
0 � 0.034 (0.005) *** 0.107 (0.023) *** 

F(t): Cosine ��πO
0 � 0.032 (0.007) *** 0.157 (0.109) 

Null deviance 543.13, df=170 586.55, df=170 

Residual deviance 190.36, df=157 195.21, df=154 
AIC 956.62 956.35 

Theta 1.071 (0.167) 1.185 (0.195) 

2 x log-likelihood -926.618 -920.351 
D-Squared 0.620 0.633 

aModel without covariates decomposition. bModel with covariates decomposition. The values in parentheses are standard errors of model parameter estimates. 

Significance: ***p < 0.001, ** p < 0.01 *p <0.05 

3.1.2. Model for Ceratitis spp. 

For orchard A, the fitted GLM without decomposition of 

covariates achieved a D
2
 of 0.814 (AIC=1598) as shown in Table 3. 

However, using decomposed variables, the GLM had a D
2
 of 

0.838 with corresponding AIC of 1578.2. At 5% significance level, 

the lagged counts of Ceratitis spp. had statistically significant 

effect on weekly Ceratitis spp. counts. Avocado plant physiology 

stages of fruit set and rapid expansion, development and harvesting 

(with reference to dormant stage) had a positive effect on the 

weekly Ceratitis spp. counts, though statistically insignificant. 

Table 3. Model parameter estimates for generalized linear models with sinusoidal components and decomposed covariates and without decomposition of 

covariates for Ceratitis spp. in orchard A. 

 

Orchard A 

GLMa GLMb 

Estimated (se) Estimated (se) 

(Intercept) 2.120 (0.430) *** 0.019 (1.010) 

Ceratitis spp. counts (t-1) 0.002 (0.000) *** 0.001 (0.000) *** 

Avocado plant physiology cycle     

 

Flowering and fruitset -0.132 (0.219) -0.009 (0.282) 

Fruitset and rapid expansion 0.106 (0.247) 0.350 (0.388) 

Fruit development 0.448 (0.330) 0.338 (0.366) 
Harvesting 0.398 (0.269) 0.124 (0.253) 

Average rainfall 0.079 (0.427) - - 

Average temperature -0.567 (0.563) - - 
Relative humidity 0.119 (0.479) - - 

Rainfall (seasonality) - - -0.197 (0.394) 

Rainfall (trend) - - 0.276 (1.419) 
Average temperature (seasonality) - - 0.100 (0.586) 

Average temperature (trend) - - 3.981 (1.625) * 

Relative humidity (seasonality) - - -1.149 (0.626). 
Relative humidity (trend) - - 4.865 (2.950). 

Sinusoidal component     

 

F(t) 0.016 (0.001) *** -0.001 (0.007) 

Sine��πO
0 � -0.405 (0.243). -0.315 (0.949) 

Cosine��πO
0 � 0.670 (0.292) * 1.176 (0.656). 

F(t):sine��πO
0 � -0.005 (0.003). 0.002 (0.009) 

F(t): Cosine ��πO
0 � -0.002 (0.003) -0.008 (0.008) 



6 Eric Ali Ibrahim et al.:  Analysis of Overdispersed Insect Count Data from an  

Avocado Plantation in Thika, Kenya 

 

Orchard A 

GLMa GLMb 

Estimated (se) Estimated (se) 

Null deviance 1112.98, df=170 1320.85, df=170 
Residual deviance 191.69, df=157 194.18, df=154 

AIC 1598 1578.2 

Theta 2.258 (0.266) 2.714 (0.334) 
2 x log-likelihood -1568.013 -1542.158 

D-Squared 0.814 0.838 

aModel without covariates decomposition. bModel with covariates decomposition. The values in parentheses are standard errors of model parameter estimates. 

Significance: ***p < 0.001, ** p < 0.01 *p <0.05. 

In orchard B, the fitted GLM without decomposition had a D
2
 

of 0.761 (AIC=1681.4). However, the GLM with decomposed 

variables achieved a D
2
 of 0.776 with corresponding AIC of 

1673. The previous weekly counts of Ceratitis spp., avocado 

plant stages of fruits development and harvesting, and relative 

humidity had a statistically significant, positive relationship 

with the weekly Ceratitis spp. counts at 5% significance level. 

Orchard B bordered mango (Mangifera indica) farms and 

forests with fig trees, which acted as alternative host for the fruit 

fly. Hence, this could be a potential explanation for variations in 

the models in orchard B, despite controls. Table 4 presents the 

results. 

Table 4. Model parameter estimates for generalized linear models with sinusoidal components and decomposed covariates and without decomposition of 

covariates for Ceratitis spp. in orchard B. 

 

Orchard B 

GLMa GLMb 

Estimate (se) Estimate (se) 

(Intercept) 3.282 (0.619) *** 3.307 (1.983). 

Ceratitis spp. counts (t-1) 0.002 (0.000) *** 0.001 (0.000) *** 

Avocado plant physiology cycle     

 

Flowering and fruitset -0.111 (0.246) -0.010 (0.245) 

Fruitset and rapid expansion -0.272 (0.282) -0.079 (0.354) 

Fruit development 0.955 (0.384) * 1.149 (0.442) ** 

Harvesting 1.028 (0.298) *** 0.841 (0.294) ** 

Average rainfall -0.343 (0.460) - - 

Average temperature 0.553 (0.608) - - 

Relative humidity 1.095 (0.496) * - - 

Rainfall (seasonality) - - 0.345 (0.445) 

Rainfall (trend) - - 0.706 (0.501) 

Average temperature (seasonality) - - 0.239 (0.662) 

Average temperature (trend) - - 0.896 (4.472) 

Relative humidity (seasonality) - - -1.258 (0.627) * 

Relative humidity (trend) - - 1.366 (2.515) 

Sinusoidal component     

 

F(t) -0.009 (0.005). -0.013 (0.014) 

Sine��πO
0 � -3.491 (0.660) *** -3.487 (1.565) * 

Cosine��πO
0 � -1.345 (0.440) ** -1.303 (0.526) * 

F(t):sin; ��πO
0 � 0.047 (0.008) *** 0.045 (0.014) ** 

F(t): Cosine ��πO
0 � 0.019 (0.005) *** 0.020 (0.007) ** 

Null deviance 872.19, df=170 955.81, df=170 

Residual deviance 192.41, df=157 193.66, df=154 

AIC 1681.4 1673 

Theta 1.869 (0.215) 2.061 (0.243) 

2 x log-likelihood -1651.368 -1636.952 

D-Squared 0.761 0.776 

aModel without covariates decomposition. bModel with covariates decomposition. The values in parentheses are standard errors of model parameter estimates. 

Significance: ***p < 0.001, ** p < 0.01 *p <0.05 

3.2. Analysis of Deviance (Type III Tests) 

To determine the unique contribution of each predictor 

variable while controlling for other variables, type III tests 

(likelihood chi-square statistic) results were obtained for each 

model, and presented in Tables 5 and 6. In all the models, the 

contribution of preceding weekly counts of insect pest species 

were statistically significant. 
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Table 5. Type III tests (likelihood chi-square statistic) for predictor variables for generalized linear model without covariate decomposition and with covariate 

composition for B. dorsalis trap counts in orchard A and B, respectively. 

 

Orchard A Orchard B 

Df LR Chisq LR Chisq 

GLMa GLMb GLMa GLMb 

B. dorsalis counts (t-1) 15.965*** 17.705*** 8.628** 4.1548 * 1 

Plant physiology stages 5.897 6.925 29.381*** 18.2862** 4 

Rainfall 0.284 - 0.077 - 1 

Average temperature 0.651 - 0.050 - 1 

Relative humidity 3.045. - 9.811** - 1 

Rainfall (seasonality) - 3.405. - 8.3686** 1 

Rainfall (trend) - 67.443*** - 0.2939 1 

Average temperature (Seasonality) - 0.018 - 1.1135 1 

Average temperature (trend) - 19.731*** - 2.744. 1 

Relative humidity (seasonality) - 0.341  0.7255 1 

Relative humidity (trend) - 0.799 - 0.0123 1 

Sinusoidal component      

 

F(t) 1.863 13.730*** 28.259*** 1.8343 1 

Sine��πO
0 � 1.987 0.684 23.062*** 4.8222* 1 

Cosine��πO
0 � 0.004 3.757. 2.335 0.6426 1 

F(t):sine��πO
0 � 2.318 0.071 40.745*** 21.5216*** 1 

F(t): Cosine ��πO
0 � 1.924 2.100 18.344*** 1.9093 1 

aModel without covariates decomposition. bModel with covariates decomposition. LR Chisq – likelihood ratio chi-square, B. dorsalis counts (t-1) is the lagged 

counts of B. dorsalis. Significance: ***p < 0.001, ** p < 0.01 *p <0.05. 

Table 6. Type III tests (likelihood chi-square statistic) for predictor variables for generalized linear model without covariate decomposition and with covariate 

composition for Ceratitis spp. trap counts in orchard A and B respectively. 

 

Orchard A Orchard B 

Df LR Chisq LR Chisq 

GLMa GLMb GLMa GLMb 

Ceratitis spp. counts (t-1) 61.401*** 27.779*** 38.109*** 27.634*** 1 

Plant physiology stages 3.948 1.317 30.337*** 17.659** 4 

Rainfall 0.031 - 0.490 - 1 

Average temperature 0.948 - 0.774 - 1 

Relative humidity 0.060 - 4.318* - 1 

Rainfall (seasonality) - 0.251 - 0.594 1 

Rainfall (trend) - 0.036 - 1.742 1 

Average temperature (seasonality) - 0.027 - 0.116 1 

Average temperature (trend) - 5.375* - 0.039 1 

Relative humidity (seasonality) - 3.249. - 4.133* 1 

Relative humidity (trend) - 2.430 - 0.284 1 

Sinusoidal component      

 

F(t) 122.024*** 0.037 3.226. 0.786 1 

Sine��πO
0 � 2.605 0.114 24.219 *** 4.722* 1 

Cosine��πO
0 � 4.607* 2.959. 9.037 ** 6.309* 1 

F(t):sine��πO
0 � 2.717. 0.043 31.227 *** 9.687** 1 

F(t): Cosine ��πO
0 � 0.379 0.927 14.794*** 8.539** 1 

aModel without covariates decomposition. bModel with covariates decomposition. LR Chisq – likelihood ratio chi-square, Ceratitis spp. counts (t-1) is the lagged 

counts of Ceratitis spp. Significance: ***p < 0.001, ** p < 0.01 *p <0.05. 

Table 7. The AIC and deviance for the GLM models with and without covariate decomposition. 

Pests Orchards 
AIC Deviance explained (%) 

GLMa GLMb GLMa GLMb 

Ceratitis spp. 
A 1598.000 1578.200 0.814 0.838 

B 1681.400 1673.000 0.761 0.776 

B. dorsalis 
A 1120.700 1032.100 0.489 0.712 

B 956.620 956.350 0.620 0.633 

aModel without covariates decomposition. bModel with covariates decomposition. 
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3.3. Model Evaluation 

To compare the fitting of the GLMs with and without 

timescale decomposition of covariates to the data, we used AIC 

and D
2
. The GLMs with decomposed covariates had a better fit 

to the data than GLMs without decomposed covariables as 

indicated by lower AICs and higher D
2
 (Table 7). 

4. Discussion 

GLMs with sinusoidal component, and without and with 

decomposition of covariates perform differently when fitted to 

the overdispersed insect count data. The GLM with 

decomposition of covariates fit the data better, attaining lower 

AIC and higher D
2
 compared to GLMs with sinusoidal 

component, and without decomposition of covariates. This is 

because decomposition of the covariates allows accounting for 

the seasonality and long-term trend effects of the covariates in the 

resulting GLM. Presence of seasonality and trend in a time series 

influences the model results [32]. Without decomposition of 

covariates, the seasonality and long-term trend effects of the 

covariates are not accounted for in the model. 

Inclusion of sinusoidal component into the GLM improves 

the model fitting, by allowing for the accounting of the time 

varying effects. Harmonic regression improves goodness-of-fit 

when modeling time series data exhibiting seasonal patterns 

[33]. The significance of sinusoidal component in the model 

could be because insect pest population varies with time, 

implying that seasonal force plays a significant role in 

influencing the observed insect pest population dynamics. 

Sinusoidal component therefore allows for accounting for the 

seasonal variations of abiotic factors within a model [34, 35]. In 

addition, presence of a sinusoidal component when modeling 

count time series using GLM allowed for avoidance of 

confounding by season and long-term trend [36]. 

The negative binomial models estimated the parameter of 

dispersion (theta) for the data within the region theta ≈ 2. Small 

values of theta (theta < 2) indicate aggregation, but high values 

(theta > 10) implies randomness, and thereby resulting in the 

distribution being indistinguishable from Poisson [37]. The 

estimated theta by the negative binomial model confirms that the 

insect count data herein are overdispersed and hence the negative 

binomial distribution is appropriate. When using time series 

regression for counts, accounting for both autocorrelation and 

overdispersion contribute to a better model fit, adding that GLM 

using Poisson as the distribution of counts often fail to adequately 

control for the overdispersion [38]. 

The weekly insect counts are significantly influenced by the 

counts recorded in the preceding week. In time series data, 

counts are usually correlated, contrary to the regression 

assumption that observations must be independent and 

identically distributed [38]. In addition, the insect counts 

increase during the fruiting stages of avocado plants. The 

populations of fruit fly tend to increase during rainy seasons 

and fruiting stage of hosts [39]. This is not the case with our 

data because insect population could not build up due to 

control measures that were undertaken when counts exceeded 

a set threshold. The contribution of temperature in the model 

imply that temperature negatively influences the expected 

counts of B. dorsalis. High temperature has a negative effect 

on the developmental stages of B. dorsalis [22]. 

Despite the performance of the GLMs, a foreseeable 

limitation is that sinusoidal components and decomposition 

may not be included into the GLMs if the data collected over a 

successive period of time does not exhibit seasonal variations 

and trend. In addition, the smoothing function may not 

perfectly fit such data especially when the amplitudes and 

frequencies change unsystematically. Further, abrupt changes 

in insect infestation over time because of control measures 

implemented in the orchards may have interfered with the 

seasonal pattern of the data. 

5. Conclusion 

A negative binomial model with sinusoidal components and 

decomposed covariates performed better in analyzing 

overdispersed insect population dynamics data compared to 

negative binomial model with sinusoidal components and 

undecomposed covariates. Thus, negative binomial model with 

sinusoidal components and decomposed covariates is 

recommended for modeling of population dynamics of B. 

dorsalis and Ceratitis spp or any other similar insect count data. 
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