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Abstract: To establish viable statistical model for modelling and analyzing DMFT index data which is important in oral 

health studies, difficulty arise when DMFT index data is characterized by over-dispersion. Over-dispersion caused by 

unobserved heterogeneity in the data pose a problem in fitting more common models to this data. and failure to account on 

such heterogeneity in the model can undermine the validity of the empirical results. The limitations of other count data models 

to account for overdispersion in DMFT index data due to existence of heterogeneity in the data, this paper formulated 

alternative model that captures heterogeneity in the data, that is Bayesian Finite mixture negative binomial regression model 

and the model applied to simulated overdispersed count data to determine the exact number of negative binomial components 

to be mixed and finally apply the model to DMFT index data. Bayesian finite mixture Negative Binomial (BFMNB-3) 

regression model is useful since the data were collected from heterogenous population. simulation results shows that 3-

component Bayesian finite mixture of NB regression model converges and was quite enough to model the overdispersed 

simulated count data, applying BFMNB-3 model to DMFT index data, the model capability to capture heterogeneity in the 

data identifies that the methods; all the treatment (all methods together), mouth wash with 0.2% sodium fluoride and Oral 

hygiene were the best methods in preventing tooth decay in children in Belo Horizonte (Brazil) aged seven years this shows 

that BFMNB-3 performs better than BNB model were due to heterogeneity present in methods it only identifies methods; all 

the treatment (all methods together) and mouth wash with 0.2% sodium fluoride to be the best methods for preventing tooth 

decay for children in Belo Horizonte (Brazil) aged seven while this two methods were not the only significant methods, 

therefore from results there is complete superiority of BFMNB-3 over BNB model. R statistical software was used to 

accomplish the objectives of this paper. 
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1. Introduction 

Count data is encountered in many areas of research 

including social sciences, transport, economic and health, 

count data includes; the number of accidents in a specified 

period of time, number of epileptic seizures in a week, 

number of insurance claims paid by Insurance company in a 

year, number of domestic violence and number of defective 

items in a batch of manufactured items. This count data has 

different forms that is, count data with excess number of 

zeros, count data with large observations and count data 

without zeros. Many standardized models have been 

developed to model count; Poisson regression, Negative 

Binomial, Zero inflated Poisson, Conway-Maxwell Poisson 

model, Double Poisson model [1], the choice of application 

of any model depend on the existence of excess zero’s and 

dispersion in the data [2]. In the recent past Negative 

binomial and Poisson distribution have been commonly used 

probability models in statistical analysis of count data [3], 

Poisson regression is popular for modeling equi-dispersed 

count data and it has been used in a number of applications 

involving data which have no overdispersion [4], but its 
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underlying assumption of equidispersion limits its use in 

many real-world applications where over and under-

dispersed count data is encountered [2] overdispersion and 

under dispersion can lead to inconsistent standard errors of 

parameter estimates when Poisson model is used [5-6], due to 

existence of overdispersion mainly due to generation of 

excess zero’s. Negative Binomial, in this distribution the 

distribution’s parameter is itself considered a random 

variable and variation of this parameter can account for 

variance of the data that is higher than the mean, this serves 

as a good alternative to handle overdispersed count data [7], 

zero-inflated double Poisson model could be a viable 

alternative to the joint modeling of excess of zeros and over-

dispersion (or under-dispersion). Over and Under-dispersed 

count data is conveniently model by Conway-Maxwell 

regression model [8, 9] and Double Poisson regression model 

[10-11]. and have been found to be very flexible to handle 

overdispersed count data [11-14] model discrete count using 

Bayesian framework in Win Bugs [15] but parameter 

estimation still remain to be complex and difficult. Although 

Conway-Maxwell-Poisson distribution could be a feasible 

alternative to model over-dispersion and under-dispersion 

count data, it is observed that it requires a lot of computation 

for parameter estimation [16] also perform less compared to 

Double Poisson where there is high sample mean for all types 

of dispersion [17], major challenge with Double Poisson 

distribution is, results are not exact since the normalizing 

constant has no closed form solution [4]. The study proposes 

Bayesian Finite mixture model to fit over-dispersed count 

data because when posterior distribution for the unknown 

parameters are given, Bayesian method provide valid 

inference without relying on the asymptotic normality and 

this is important when the sample size is small. In the study, 

BFMNB-k was formulated its performance accessed by 

fitting to over-dispersed Simulated count data and finally 

apply BFMNB – 3 model to DMFT index data. 

2. Literature Review 

Bayesian analysis represent prior uncertainty about model 

parameters having probability distribution and updating prior 

uncertainty with current data to induce posterior probability 

distribution for the parameter with less uncertainty. In 

Bayesian analysis, model parameters are considered random 

quantities, whereas the data having been already observed are 

considered fixed quantities. The Bayesian approach provides 

a fairly explicit solution to common problems of statistical 

inference, new problems of high-dimensional data analysis 

that are coming up because of emergence of high-

dimensional data sets, and complex decision problems of real 

life [18]. 

Models for Count data discussed in this paper, 

Poisson Regression Model 

Poisson has been used as basic model in modeling count 

data [19] it models equi-dispersed count data that is; 

Ε���|��� = 	
����|��� = ��
(����) 

but this model fails when we have over-dispersed data. 

The model is represented as, 

�� 	∽ ����(��)	where �� = 	��
(����) 
In real life situations count data exhibit overdispersion and 

the assumptions of equality of mean and variance in Poisson 

(restrictiveness) fails due to heterogeneity (difference 

between individuals) and contagion (dependence between the 

occurrence of events) [17]. 

[4] To model overdispersed count data, Poisson regression 

can be modified such that, 

�� 	∽ ����(��)	where �� = 	��
(����)�� 
��  is nonnegative multiplicative random effect term to 

model individual heterogeneity, and taking total expectation 

Ε���|��� = ��
(����)	Ε	(��) 
Var���|��� = 	Ε���|��� + 		
�����Ε����� 	Ε����|��� 

Therefore, variance is greater than mean and the model can 

be used now to model overdispersed count data. 

Negative Binomial 

Negative Binomial have been considered to out-perform 

Poisson regression model in modeling overdispersed count 

data [5], it is obtain by placing gamma prior in the 

nonnegative multiplicative random effect term �� in Poisson 

regression model, 

�� ∽ �
  
 !", 1"% = 	 "
&

Γ(")	��&()�&*+  
Where ,���� = 1 and 	
���� =	"()�. 
Factoring out �� in Poisson regression we obtain negative 

binomial parameterized by mean -� = exp	(����) and inverse 

dispersion parameter 1 = 	 )& given by, 

2(��) = 	 Γ(3() +	��)��Γ(3 − 1) 5
3()3() +	-�6

789 ( -�3() +	-�):+  
And mean Variance is given by; 

Ε���|��� = ��
(����) 
Var���|��� = 	Ε���|��� + 	3Ε����|��� 

Bayesian Poisson Regression Model 

The model is given by, 

�� ∽ �����(��) log(��) = 	>�� 

log(��) = >� for i = 1,2, …, n � − regression parameters >� − vector of covariates 


(?�|>� , �) = �����(��) 
Poisson density is evaluated at a specified value of ?� with 

mean parameter ��. 
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Placing prior distributions in the regression parameters 

where @(. )  induce a prior distribution, that is @(�) =B�� (0, D� = B) n is the sample size. 

Prior distribution and likelihood function define the 

posterior distribution of the regression parameters (Bayes’ 

theorem). Samples from the posterior distribution is obtained 

in PROC MCMC. 

To access the goodness of fit 

EF� =	G�?� − Ε	(?�)��	(?�)
H

�I)
 

3. Methodology 

Bayesian Finite Mixture Negative Binomial Regression 

Model [20] Due to heterogeneity (difference between 

individual) and contagion (dependence between the 

occurrence of events) count data in real life are usually 

overdispersed (Variance is greater than the mean). 

The random vector ? = (�), … , �K)′ is said to arise from a 

finite mixture distribution if the probability density function �(�) has the form, 

�(�|Θ) = N)2)(�|O)) +	…+ N&2&(�|O&) 
Where, Θ = (O), … , O&) vector of all unknown parameters 

and N� ′�  are mixing proportions whose elements are 

restricted as positive and sum to unity. 

A single density 2&(. |O&)  is component distribution for 

component "  and is assume to arise from the same 

distribution 

The marginal distribution of the mixture is given by; 

�(��|�� , Θ) = GN&
P

&I)
QRS-�,&, T&U 

=	GN&� Γ(�� +	T&)Γ(�� + 	1)ΓT& 	(
-�,&-�,& +	T&):+(

T&-�,& +	T&)VW�
P

&I)
 

X�Y(-�) = 	 ���� 

,(��|�� , O) = 	G-�,&N&
P

&I)
 

	
�(��|�� , Θ) = 	,(��|�� , O) + ZGN&-�,&� !1 +	 1T&%
P

&I)
[ 

−	,(��|�� , O)� 
-�,& is the mean, Θ vector of unknown parameters and T& 

dispersion parameters and goes to infinity in each 

component. 

The variance of ��  is always greater than the mean even if 

all the components have the same mean. K is sequentially 

increased until both AIC and BIC value reach their optimal 

values. 

The unobserved random variable variables \�  are 

independently and identically multinomial with probabilities 

w. 


(\�|N) =]N&̂ +,W
P

&I)
 


(\�|N)  is the likelihood of observing the component 

membership vector \�  for each site � , given the component 

proportions N. likelihood for site �; 

(�� , \�|�� , Θ) = 
(��|\� , �� , Θ)
(\�|�� , Θ) 

= 	]�
(��|�� , �&
P

&I)
, T&)�^+,WN&̂ +,& 


(��|�� , �& , T&) − X  function of the NB model for "_` 

component, likelihood function over all sites; 


(�, \|Θ, �) =]]�
(��
K

�I)

P

&I)
|�� , �& , T&)�^+,WN&̂ +,W 

=]�]�
(��
K

�I)

P

&I)
|�� , �&, T&)�^+,W��]N&HW

&

&I)
� 

B& = ∑ \�,&K�I)  number of observations allocated to 

component ". 

posterior distribution given by, 

@(b, Θ|�, �) ∝ 	
(b, Θ|�, >)@(Θ) 
Where @(Θ) is the prior for all the parameters and > is the 

matrix covariates for all sites, [21] Finite mixture allow for 

additional heterogeneity within components not captured by 

explanatory variables. 

The prior distributions are; 

For the unknown regression coefficients d,  @(�) =e	QFf)(
g, �g) ∝ exp	�− )� (�& −	
g)h�g()(�& −	
g)� 
For dispersion parameter is given by; @(T&)�
  
(
, i) ∝ T&j()exp	(−iT&) 
And prior distribution for weights is given by; @(N) =k���lℎn�o(�H, … , �H) ∝ 	N&pq() 
Dirichlet is uniform when �H = 1 

The conditional distribution is given by; For the unknown 

regression coefficients 

@S�&rΘsW , b, >, �U	 
∝ 	]�]�
(��

K

�I)

P

&I)
|�� , �& , T&)�^+,W�	 

exp	�− 12 (�& − ig)′�g()(�& − ig)� 
For the dispersion parameter T& 

@ST&rΘVW , b, >, �U	 
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∝]�]�
���
P

�I)

K

&I)
|�� , ��^+,W�T&j() exp�4iT&� 

For weights N& 

@�N|\� � k���lmn�o 

��H � ), … , �H � &�	u]v&pqfwW()
P

&I)
 

For \� is a multinomial distribution given by; 

@S\�,&rΘ, >� , ��U 
� exno�B� �1, r
S\�,)rΘ, >� , ��U, … , 
Sb�,&rΘ, >� , ��Ur� 

4. Data Description 

DMFT index data was from the Belo Horizonte Caries 

Prevention (BELCAP) study. The data was collected 

from children in Belo Horizonte (Brazil) aged 7 years at 

the start of the study. determining which method was the 

best for preventing tooth decay, six treatments were 

randomized to six separate treatment groups. Only eight 

deciduous molars were considered, the lowest value was 

0, highest was 8. Main reasons for using this dataset; the 

data is relatively good quality and has been used in 

various study purposes and the data shows existence of 

heterogeneity of the several different sub-populations. 

Data has two sub-population i.e. End (Number of 

decayed, missing or filled teeth at the end of the study), 

begin (Number of decayed, missing or filled teeth at the 

beginning of the study) and covariates (Gender-(male 

and female), Ethnic (with levels brown, white and black), 

Treatment (with levels control-Control group, educ-Oral 

health education, enrich- Enrichment of the school diet 

with rice bran, rinse-Mouthwash with 0.2% sodium 

fluoride (NaF) solution, hygiene-Oral hygiene and all-

All four methods together). 

5. Empirical Results 

i) Results from simulation 

Sample size of N=1000 was used to generate the data 

that was used to select the most viable model of Bayesian 

finite mixture negative binomial. The number of 

components for mixture was determined and was found to 

be 3 since the model converge only when 3 components 

were mixed. 

Table 1. Goodness of fit. 

number of components (k) AIC BIC 

K = 1 2686.13 2707.203 

K = 2 1920.231 1966.592 

K = 3 1918.456 1939.529 

Table 1 show the information criterion at each of 

components, comparing the BIC for component 1-3 the BIC 

for model with component 1 was 2707.203 which is very 

large, for component 1 and 2 although there values are close 

the BIC for component 3 (1939.529) is smaller compared to 

BIC for component 2 (1966.592) therefore the model where 3 

components of Negative Binomial were mixed is the best to 

fit the data and research concludes that with 3 components 

mixed the model provides best fit to overdispersed data. 

The output was also visualized using figure 1. 

 

Figure 1. Goodness of fit graph. 

Checking for overdispersion in the simulated count data, 

figure 2 show that there is skeweness to the right this 

displays presence of over-dispersion also displays the high 

poroportion of zero’s and that justifies over-dispersion in the 

data, the summary statistics [M (SD) = 3.15 (5.66)] showed 

that the mean was 3.15 and the variance was 32.0356 

implying that variance is greater than the mean a 

characteristic present in any overdispersed data. 

 

Figure 2. Histogram for simulated counts from BFMNB-3. 

Table 2. BFMNB-3 True and Estimated parameter values. 

Model 

parameters 

True Values BFMNB – 3 Values 

Component 1 Component 2 Component 3 Component 1 Component 2 Component 3 

�),&^  0.0 -0.5 0.5 -0.3178 0.525 0.343 

��,&^  2.0 0.5 -0.5 -0.510 0.123 0.464 

�z,&^  -0.5 0.5 2.0 -0.510 1.112 0.465 

T&̂ 5 10 15 4.824 9.112 14 

N& 0.333 0.333 0.333 0.324 0.326 0.350 
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Table 2 displays the parameter values and it is observed 

that the true and the estimated parameter values have no 

much difference and therefore they are unbiased for instance 

True value �z,&^  for component one is -0.5 and the value for 

component one for BFMNB-3 is -0.510 considering also the 

dispersion parameter T&̂ the true values for components 1-3 

are 5, 10 and 15 and for BFMNB-3 are 4.824, 9.112 and 14 

this values are closer to each other implying less deviation 

from each other, the same property is also observed in the 

assignment of weights N& where the weights for component 

1-3 were 0.333, 0.333 and 0.333 and the weights assigned to 

components of BFMNB-3 were 0.324, 0.326 and 0.350. 

ii) Applying BFMNB – 3 Model to data (DMFT index 

data) 
 

Table 3. Summary Statistics for testing over-dispersion in data. 

Variables 

 Y (End) Control all Rinse hygiene enrich education 

Mean 1.854454 2.35 1.31 1.65 1.80 2.15 1.86 

Variance 2.905925 3.3125 2.2201 2.7889 3.24 2.9584 2.25 

 
Checking for overdispersion in DMFT index data, In Table 

3 it was found that the hypothesis {g : u  = 0 for no over-

dispersion was rejected u = 0.1044174 which is not equal to 

zero therefore there is over-dispersion in the data. Z-score 

test had a t-probability of 2e−16 which is less than 0.0005, Z 

test also evaluate that the data are negative binomial and 

therefore it suggests that real over-dispersion exists in the 

data also the existence of overdispersion was also seen in 

figure 3 were the graph is skewed to the right. 

 

Figure 3. Histogram for DMFT index data. 

 

Figure 4. Goodness of fit of the model to DMFT index data. 

Figure 4 show the goodness of fit of BFMNB – 3 model to 

DMFT index data, from Table 4 the BIC and AIC were 

significantly smaller for component 3, comparing the model 

with two components mixed the BIC was 2898.982 and the 

model with three components mixed had BIC of 2885.572 

and although this values were close, they are significantly 

different to guarantee the choice of model with three 

components mixed together. therefore BFMNB-3 model fits 

DMFT index data well. 

 

Figure 5. Trace plot and Posterior Distribution density. 

Table 4. BFMNB-3 Goodness of fit to DMFT index data. 

number of components (k) AIC BIC 

K = 1 2956.092 2998.22 

K = 2 2838.081 2898.932 

K = 3 2834.083 2885.572 

Figure 5 shows the convergence of the model by trace plot 

fitted to DMFT index data it was observed that the model 

converges after 2000 iterations, posterior distributions of the 

model is bell and monomodal shape of marginal posterior 

distribution close to a normal distribution although there is 

evidence of dispersion on the right-hand side of the plot. 

Table 5. Coefficient Estimates and Bayes Factors for Model Parameters. 

Parameter Estimate Bayes Factor 

Gender male 0.103860 1.74e-03 

Ethnic white 0.088739 1.19e-03 

Ethnic black -0.115893 8.97e-03 

Treatment education -0.239546 0.1 

Treatment all -0.492871 18.69 

Treatment enrich -0.079593 7.29e-03 

Treatment rinse -0.259170 0.56 

Treatment hygiene -0.222415 0.25 

(intercept) 1.035099 1.32e+07 

BIC 2885.572 AIC 2838.085  
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Figure 6. Posterior and prior Density plots. 

Table 5 shows that the parameters for the methods; all 

methods together, mouth wash with 0.2% sodium fluoride 

and Oral hygiene had Bayes factor of 18.69, 0.56 and 0.25 

respectively all greater than the standard value 0.1 and that 

all this parameters were significant therefore the methods; all 

the treatment (all methods together), mouth wash with 0.2% 

sodium fluoride and Oral hygiene were the best methods in 

preventing tooth decay in children in Belo Horizonte (Brazil) 

aged seven years. Table 5 also report the BIC of 2885.572 

this value defines the goodness of fit of the BFMNB-3 to 

DMFT index data the value is lower compared to the BIC 

(2898.932) for BFMNB-2 therefore BFMNB-3 best fit the 

data. 

From figure 6 the posterior distribution for all the variables 

are almost the same this is due to the assumption of 

conjugate priors for the model parameters this is also clear on 

the density of prior which is same for all the variables. 

ii) Applying Bayesian Negative Binomial (BNB) Model to 

data (DMFT index data) 

Applying BNB to DMFT index data it was observed that 

the parameters for methods; all the treatment (all methods 

together) and mouth wash with 0.2% sodium fluoride were 

the best method for preventing tooth decay for children in 

Belo Horizonte (Brazil) aged seven this is explained by low 

proportions inside ROPE i.e. the closer to zero the better and 

null hypothesis should be rejected therefore the parameters 

are significant from Table 6. The same results were also seen 

in figure 7 where the light blue color defines the most 

significant parameters. 

Table 6. Test for Practical Equivalence (ROPE: [-0.10 0.10]). 

Parameter |} inside ROPE 95% HDI 

Gender male Undecided 0.34% [-0.01 0.26] 

Ethnic white Undecided 0.54% [-0.05 0.24] 
Ethnic black Undecided 0.31% [-0.39 0.06] 

Treatment education Undecided 0.11% [-0.47 -0.00] 

Treatment all Rejected 0.00% [-0.83 -0.35] 
Treatment enrich Undecided 0.51% [-0.32 0.13] 

Treatment rinse Rejected 0.00% [-0.57 -0.13] 

Treatment hygiene Undecided 0.02% [-0.55 -0.07] 
(Intercept) Rejected 0.00% [0.58 0.96] 

reciprocal-dispersion Rejected 0.00% [1.93 3.46] 

 

 

Figure 7. Test for Practical Equivalence plot. 
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Bayesian Negative Binomial for differential expression 

with confounding factors [22] concluded that BNB is capable 

of handling and tracking complex experiments involving 

multiple factors and multi-variate dependence structure, 

despite this incredible performance of BNB it was observed 

from the results that it is less capable to capture heterogeneity 

and uncertainty in the variables under study therefore 

BFMNB-3 outperforms (since BFMNB-3 was able to 

identify the 3 components being the best methods to prevent 

tooth decay) BNB and the research concludes that BFMNB-3 

is the most viable model to analyze the DMFT index data. 

6. Conclusion 

To formulate and apply BFMNB-3 to DMFT index data 

was the main objective of this paper. The findings of the 

study were BFMNB-3 model deemed to be the best model 

in modelling overdispersed data with sub-populations 

characterized with heterogeneity also the model can 

handle uncertainty in the data (DMFT index data) it was 

clearly seen that the model has lower BIC (2885.572). the 

plots (figures 3 and 5) showed that the model can be used 

to better reveal the source of dispersion observed in 

DMFT index data (where treatment was found to be the 

source of Over-dispersion), The model being capable to 

capture heterogeneity it was found that the methods; all 

the treatment (all methods together), mouth wash with 

0.2% sodium fluoride and Oral hygiene were the best 

methods in preventing tooth decay in children in Belo 

Horizonte (Brazil) aged seven years this shows that 

BFMNB-3 performs better than BNB model were due to 

heterogeneity present in methods it was only able to only 

identify methods; all the treatment (all methods together) 

and mouth wash with 0.2% sodium fluoride to be the best 

methods for preventing tooth decay for children in Belo 

Horizonte (Brazil) aged seven and indeed this two 

methods were not the only best methods, therefore from 

results there is complete superiority of BFMNB-3 over 

BNB model. 
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