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Abstract: Principal component Analysis (PCA) is one of the popular methods used to solve the multicollinearity problem. 
Researchers in 2014 proposed an estimator to solve this problem in the linear model when there were stochastic linear 
restrictions on the regression coefficients. This estimator was called the stochastic restricted principal components (SRPC) 
regression estimator. The estimator was constructed by combining the ordinary mixed estimator (OME) and the principal 
components regression (PCR) estimator. It ignores the number of components (orthogonal matrix Tr) that the researchers 
choose to solve the multicollinearity problem in the data matrix (X). This paper proposed four different methods (Lagrange 
function, the same technique, the constrained principal component model, and substitute in model) to modify the (SRPC) 
estimator to be used in case of multicollinearity. Finally, a numerical example, an application, and simulation study have been 
introduced to illustrate the performance of the proposed estimator. 

Keywords: Constrained Principal Components Analysis, General Linear Model, Principal Component Analysis,  
Simulation and Application, Stochastic Restricted Principal Components 

 

1. Introduction 

According to the Gauss Markov theorem, the linear 
regression model (LM) take the form: 

��.� � ��.���.� 	 
�.�[1]                             (1) 

where �  is an n × 1 vector of responses, �  is an n × p 
observed matrix of the variables, assumed to have full rank, 
i.e., rank (�) =	�, � is a � × 1 vector of unknown parameters, 
and 
  is an n × 1 vector of error terms assumed to be 
multivariate normally distributed with mean 0 and variance 
covariance 
���. It is known that the ordinary least squares 
(OLS) estimator of � is: 

����� � ��/�����/�                                (2) 

�����  is normally distributed ���, 
���/����� . The 
standard regression model assumes that the column vectors in 
� are linearly independent. The restricted model for ����� can 
be written as � � ��  where �  is an �  x � matrix ��	 � ��, 
and	� is � x 1 vector of restrictions. The restricted estimator 
������  using Lagrange function was derived as follows: 

 � �� ! ���/�� ! ��� 	 "�� ! ������ 
#
#�  � !2�/� 	 2��/��	����� 	 �/" � 0 

#
#"  � � ! ������ � 0 

" � !2����/�����/����� ! ������� 

������ � ����� 	 ��/�����/����/�����/����� ! ������� (3) 

Researchers in 1961 used the next method to get the 
Ordinary Mixed Estimator (OME) for the least squares 
method, where they combined between the LM and the 
restricted model as follows [2]: 

&��' � &��'� 	 & 

∗'                                  (4) 

where: ) *& 

∗' �
/ 
∗/�+ � 
� &� 0
0 ,' , i.e. 
�,  is the 

variance of the error term that was found in the restricted 
model (-./ (
∗)), where V assumed to be known and positive 
definite (pd) matrix. The (OME) for the least square is given 



 International Journal of Data Science and Analysis 2019; 5(2): 18-26 19 
 

by equations (5) and (6) which were equivalent as follows:  

���01 � ��/� + �/,���)��(�/� + �/,���)       (5) 

= ����� + (�/�)���/(, + �(�/�)���/)��(� − ������) (6)  

The expectation of the OME was )2���013 = � , the 

variance was given by -./2���013 = 
�(�/� + �/,���)�� 

[2], and the matrix mean square error MMSE2���013 =
�(�/� + �/,���)�� . From (3) and (6), the equations 
indicate that ���01 = ������ 	adding	V	to	the	term	�(�/�)���/  

Section two presented another view of the SRPC, while 
section three introduced four different methods for 
computing the SRPC estimator. Finally, the last section 
introduced a numerical example to show the difference 
between the old method that introduced by previous papers 
[3], and the new method that was proposed in this paper. 

2. Another View of the CDEFGH Estimator 

As indicated in 2014, the SRPC calculated the OME for 
principal component [3]. Unlike the estimator introduced by 
researchers in 1961 that calculated the OME for the least 
squares method [2]. They used (7) and (8) to derive their 
estimator: 

� = �IJIJ/� + 
∗                                (7) 

&��' = &��' IJIJ/� + & 

∗'                           (8) 

where IJ = (K�, K�, … , KJ) represents the remaining columns 
of the orthogonal matrix I = 2K�, K�, … , K�3  after having 
deleted the last � − / columns, where 0 ≤ / ≤ �.  

In a study [3] researchers assumed that all changes led to β 
in case of using principal component analysis. They used the 

equation: ��M� = IJIJ/� in their analysis, the summarizing of 
their study was as follows: 

���NM� = (�/� + �/,���)��(IJIJ/�/� + �/,���)                                                   (9) 

���NM� = ��M� + (X/X)���/(, + �(X/X)���/)��(� − ���M�)	                                          (10) 

where the expectation for their estimator was: )2���013 = � + ((X/X) + �/,���)��(IJIJ/ − �)X/Xβ, while the variance was: 

-./2���013 = 
�(�/� + �/,���)��(IJIJ/�/�IJIJ/ + �/,���)(�/� + �/,���)��, and the matrix mean square error take 

the form:  

MMSE2���013 = 
�(�/� + �/,���)��(IJIJ/�/�IJIJ/ + �/,���)(�/� + �/,���)��
+ *Q((X/X) + �/,���)��(IJIJ/ − �)X/XβRQ((X/X) + �/,���)��(IJIJ/ − �)X/XβR/+ 

In case of using the model shown in (4) in the principal 
component model, a new estimator is found. This new 
estimator is different from the estimator shown in (10). 
Researchers depended on the equations: �	 = �		�	 + 
	  and � = �� + 
∗ to calculate expectation and variance for their 
estimator [3], and they ignored the principal component 

model and its assumptions YT.� = XT.UTU.W	TW.U/ 	βU.� + ϵT.� , 

�Y.� = �Y.JIJ.M 	IM.J/ 	�J.� + 
∗Y.� . If they had taken these 

assumptions in to consideration, the expectation and the 
variance would change. The expectation would become: )2���NM�3 = ��Z i.e their estimator would be unbiased for the 

principal component parameter ��Z . The researchers should 
use the estimator of principal component when they want to 
calculate the OME for principal component (SRPC) and 
don’t use OLS in this case [4]. This paper tries to solve these 
problems by introducing the same estimator using the 
principal component model, where the next sections indicate 
four different methods of the proposed estimator. 

3. The Proposed Estimator 

The author don’t agree with researchers in 2014 at 
equations (9) and (10), where they used the principal 
component method to solve the problem of Multicollinearity. 
In case of highly correlated between variables 

(Multicollinearity) the matrix (X/X)��  doesn’t exist, so the 
researchers cannot estimate ���NM� ]5 [A new estimator has 
been proposed using the following equations by four 
different methods. 

&��' = [�IJ�IJ\ IJ/� + & 

∗'                          (11) 

where: )(

∗/) = 0, and: 

) *& 

∗' (
/ 
∗/)+ = 
� &� 00 ,'                     (12) 

Theorem: ��0�NM� = ��M� + IJ]J��IJ	/�/(�IJ]J��IJ	/�/ +,)��(� − ���M�) , this theorem can be proved by four 
methods: 1. Lagrange function, 2. the same technique which 
used by researchers in 1961 to get the OME estimator [2], 3. 
the constrained principal component model, and 4. substitute 
in model (4) using principal component assumptions. 

3.1. The First Method 

According to previous studies, in case of multicollinearity 
problem, the researchers used another forms to estimate the 
parameters like principal component regression PCR, where 
this problem occurs when the predictors included in the 
linear model are highly correlated with each other. In this 
case the matrix �/� tends to be singular hence, identifying 
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the least squares estimators will face numerical problems [6]. 
The researchers used the orthogonal matrix I	in the GLM 

to get the PCR estimator for � as follows: 

��.� = ��.�IM.M	IM.M/ 	��.� + 
�.�                    (13) 

A spectral decomposition of the matrix X/X was given by: 

�/� = 2IJ , I��J	3 []J 00 ]��J\ [ IJI��J\         (14) 

where ΛU = TU/X/XTU  is diagonal matrix such that the main 
diagonal elements are the r largest eigenvalues of X/X, while 

the main diagonal elements of the Λ_�U  matrix are the 
remaining � − / eigenvalues. 

The PCR estimator for � can be written as: 

��M� = IJ	(IJ/�/�IJ)��	IJ/�/                     (15) 

The expectation of ��M�  is 2��M�3 = IJIJ	/� = �M� , -./2��M�3 = 
�IJ(]J)��IJ/ , and the matrix mean square 

error is MMSE2��M�3 = 
�IJ(]J)��IJ/. 
The restricted estimator ��M��  using Lagrange function is 

given by: 

 = (� − �IJIJ	/�)/(� − �IJIJ	/�) + "/(� − �IJIJ	/�	) 
= (�/ − �/IJIJ	/�/)	(� − �IJIJ	/�) + "/(� − �IJIJ	/�	) 

= �/� − �/�IJIJ	/�	 − �/IJIJ	/�/� + �/IJIJ	/�/�IJIJ	/�	 + "/(� − �IJIJ	/�	) 
##�  = −�/�IJIJ	/ − IJIJ	/�/� + 2IJIJ	/�/�IJIJ	/	����� − IJIJ	/�/" = 0 

= −2IJIJ	/�/� + 2IJIJ	/(�/�)	����� − IJIJ	/�/" = 0 (16) 

##"  = � − �IJIJ	/����� = � − ��M�� = 0 

∴ � = �IJIJ	/�����  

From (16): 

IJIJ	/�/" = −2IJIJ	/�/� + 2IJIJ	/(�/�)	IJIJ	/�����  

�IJIJ	/(IJIJ	/(�/�)	IJIJ	/		)��IJIJ	/�/" = −2�IJIJ	/(IJIJ	/(�/�)IJIJ	/		)��IJIJ	/�/� + 2�	IJIJ	/����� . 

�IJ(IJ	/(�/�)	IJ		)��IJ	/�/" = −2�IJ(IJ	/	(�/�)	IJ		)��IJ	/�/� + 2� 

�IJ(IJ	/(�/�)	IJ		)��IJ	/�/" = 2(� − ���M�) 
∴ " = 2(�IJ(IJ	/�/�IJ)��IJ	/�/)��(� − ���M�) 

Substitute in (16): 

IJIJ	/�/" = −2IJIJ	/�/� + 2IJIJ	/(�/�)	IJIJ	/�����  

2IJIJ	/�/(�IJ(IJ	/�/�IJ)��IJ	/�/)��(� − ���M�) = −2IJIJ	/�/� + 2IJIJ	/(�/�)	IJIJ	/�����  

IJIJ	/(�/�)	IJIJ	/����� = IJIJ	/�/(�IJ(])��IJ	/�/)��(� − ���M�) + IJIJ	/�/� 

	��M��	 	= 	 (IJIJ	/�/�IJIJ	/)	��			IJIJ	/�/(�IJ(])��IJ	/�/)��(� − ���M�) +	(IJIJ	/�/�IJIJ	/)	��		IJIJ	/�/� 

=	IJ(IJ	/�/�IJ)	��			IJ/IJIJ	/�/(�IJ(])��IJ	/�/)��(� − ���M�) 	+ IJ(IJ	/�/�IJ)	��			IJ/IJIJ	/�/� 

= IJ(]J	)	��			IJ/�/(�IJ(]J)��IJ	/�/)��(� − ���M�) + IJ(]J	)	��			IJ/�/ 
��M�� = ��M� + IJ]J��IJ	/�/(�IJ]J��IJ	/�/)��(� − ���M�)                                                      (17) 

By adding the term V to (�IJ]J��IJ	/�/): 
��0�NM� = ��M� + IJ]J��IJ	/�/(�IJ]J��IJ	/�/ + ,)��(� − ���M�)                                                (18) 

where (ab�cd) refers to the modified stochastic restricted principal components. 
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3.2. The Second Method 

Researchers in 2009 said that ��M� = IJ	(ΛU)��	IJ/�/�,where	ΛU = IJ/�/�IJ [6]. Following previous studies [2], if ����� 
changed to ��M�, ��0�NM�  become as follows: 

��0�NM� = IJ(ΛU + IJ/�/,���IJ)��(IJ/�/� + IJ/�/,���)                                                  (19) 

= (ΛUIJ/ + IJ/�/,���IJIJ/)��(IJ/�/�IJIJ/� + IJ/�/
 + IJ/�/,���IJIJ/� + IJ/�/,��
∗) 
=	 (ΛUIJ/ + IJ/�/,���IJIJ/)��(ΛUIJ/� + IJ/�/,���IJIJ/�) + (ΛUIJ/ + IJ/�/,���IJIJ/)��(IJ/�/
 + IJ/�/,��
∗) 

= ��M� + (ΛUIJ/ + IJ/�/,���IJIJ/)��(IJ/�/
 + IJ/�/,��
∗) 
)2��0�NM�3 = �M.�                                                                                        (20) 

) *2��0�NM� − �M�3	2��0�NM� − �M�3/+
= IJ(ΛU + IJ/�/,���IJ)��(IJ/�/)(

/)�IJ + IJ/�/,��)(
∗
∗/),���IJ)(ΛU + IJ/�/,���IJ)��IJ/ 

= 
�IJ(ΛU + IJ/�/,���IJ)��(IJ/�/�IJ + IJ/�/,���IJ)(ΛU + IJ/�/,���IJ)��IJ/ 
-./2��0�NM�3 = 
�I(ΛU + IJ/�/,���IJ)��IJ/                                                         (21) 

Using equation (19), equation (22) can be proved knowing that:  (f + gdh)�� = f�� − f��g(d�� + df��g)��hf��, where f, g, d, and	h are pd matrices [7]. 

��0�NM� = IJ(ΛU + IJ/�/,���IJ)��(IJ/�/� + IJ/�/,���) 
= IJ(ΛU�� − ΛU��IJ/�/(, + �IJΛU��IJ/�/)���IJΛU��)	(IJ/�/� + IJ/�/,���) 

= IJ(ΛU��IJ/�/� + ΛU��IJ/�/,��� − ΛU��IJ/�/(, + �IJΛU��IJ/�/)��	�IJΛU��	IJ/�/�− ΛU��IJ/�/(, + �IJΛU��IJ/�/)��	�IJΛU��	IJ/�/,���) 
= ��M� + IJΛU��IJ/�/,��� − IJΛU��IJ/�/(, + �IJΛU��IJ/�/)��	�	��M�− IJΛU��IJ/�/(, + �IJΛU��IJ/�/)��	�IJΛU��	IJ/�/,���) 

	= 	��M� + IJΛU��IJ/�/Q	,��� − (, + �IJΛU��IJ/�/)�����M� − (, + �IJΛU��IJ/�/)���IJΛU��IJ/�/,���R	 	= 	��M�+ IJΛU��IJ/�/Q−(, + �IJΛU��IJ/�/)�����M� + (,�� − (, + �IJΛU��IJ/�/)���IJΛU��IJ/�/,��)���R	 	= 	��M�+ IJΛU��IJ/�/Q−(, + �IJΛU��IJ/�/)�����M� + (,�� − ,��	(�
+ �IJΛU��IJ/�/,��)���IJΛU��IJ/�/,��)���R + Q,�� − ,��	(�IJΛU��IJ/�/)�� + ,��R� 	 

Note that: 

,�� − ,��	(�IJΛU��IJ/�/)�� + ,�� = ,�� − ,��	�IJΛU��IJ/�/	(� + ,���IJΛU��IJ/�/	) = (, + �IΛU��IJ/�/)�� 

= ��M� + IJΛU��IJ/�/Q−(, + �IΛU��IJ/�/)������Z + (, + �IΛU��IJ/�/)���R 
Then, 

��0�NM� = ��M� + IJΛU��IJ/�/(, + �IJΛU��IJ/�/)��(� − ���M�)                                      (22) 

3.3. The Third Method 

According to previous studies, Constrained Principal 
Component Analysis is a method for structural analysis of 
multivariate data that combine features of regression analysis 
with principal component analysis. In this method, the 
original data are first decomposed into several components 
according to external information. The components are then 

subjected to principal component analysis to explore 
structures within the components [8]. 

The constrained principal component model is: 

ij.� = kj.�a�.YlY.�/ + gj.YlY.�/ + kj.�d�.� + mj.�    (23) 

where i  is an N × n matrix of responses, k	and	l  are 
observed matrices of the variables, assumed to have full rank, 
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a,g, and	d are matrices of unknown parameters, and m is an 
N × n matrix of error terms assumed to be multivariate 
normally distributed with mean 0 and variance covariance 
��	 . Researchers in a study [9] estimated the unknown 
matrices of parameter as: 

aD = (k/nk)�k/ni l(l/ l)�                 (24)	
go = n�npq/ri l(l/ l)�                    (25)	
d� = (k/nk)�k/nips/�/   �                   (26)	

mo = cq/rics/�/ − n�npq/rics/�/ − cq/rips/�/   �		
where: 

pq/r = � − cq/r , cq/r = k(k/nk)�k/n 

ps/� = � − cs/�, cs/� = l(l/ l)�l/  

n, a symmetric nonnegative definite (nnd) matrix of order 
N denote the rows Metric matrix, and  , a symmetric nnd 
matrix of order n, to denote the columns metric matrix. If	n 
and/or   are positive-semidefinite (psd) but not pd, the 
conditions: rank (n G) = rank (G), and rank (  H) = rank (H) 
has been required. These conditions were essential for the 
projection matrices [9]). When n	 = 	�  and  	 = 	� . Putting 
the estimates of a,g, d, .tu	m  above in model (27) yields 
the following decomposition of the data matrix: 

i = cq/ric/s/� + n�npq/ric/s/� + cq/rip/s/�  � + (i − cq/ric/s/� − n�npq/ric/s/� − cq/rip/s/�  �) (27) 

Using the general model of restricted principal component: 

	i�j.� 	= 	k(k/k)��k/i + GS(k/k)��l(l/(k/k)��l)��l/ − k(k/k)��k/i	l(l/(k/k)��l)��l/		(k/k)�� 

let: i = kb, k = �IJ,  =  / = (k/k)��, l = I/�/, and �IJb/ = �. 

Where S is a p x n matrix and: b = (a�.YlY.�/ + d�.�). 
	i�j.� 	= 	k(k/k)��k/i + G(k/k)��IJ/�/(�IJ(k/k)��IJ/�/)���IJb/ − k(k/k)��IJ/�/(�IJ(k/k)��IJ/�/)���IJ 		(k/k)��k/i 

= �IJ(IJ/�/�IJ)��IJ/�/� + XIJ(IJ/�/�IJ)��IJ/�/(�IJ(IJ/�/�IJ)��IJ/�/)���IJE/− �IJ(IJ/�/�IJ)��IJ/�/(�IJ(IJ/�/�IJ)��IJ/�/)���IJ		(IJ/�/�IJ)��IJ/�/� 

=	����Z + �IJ(IJ/�/�IJ)��IJ/�/(�IJ(IJ/�/�IJ)��IJ/�/)���IJE/− �IJ(IJ/�/�IJ)��IJ/�/(�IJ(IJ/�/�IJ)��IJ/�/)���IJIJ/		���Z 

where: 

IJ(IJ/�/�IJ)��IJ/�/(�IJ(IJ/�/�IJ)��IJ/�/)���IJ = � (wb�xk	��klI	fxh	 myI	�x,m�bm) 
i�j.� = ����Z + XIJ(IJ/�/�IJ)��IJ/�/(�IJ(IJ/�/�IJ)��IJ/�/)��(� − ����Z) = ����Z�  

���Z� = ���Z + IJ(IJ/�/�IJ)��IJ/�/(�IJ(IJ/�/�IJ)��IJ/�/)��(� − ����Z) = ��M� + IJ]J��IJ	/�/(�IJ]J��IJ	/�/)��(� − ���M�) 
this is the same result as (17), then (18) can be used to get the proposed estimator: 

��0�NM� = ��M� + IJΛU��IJ/�/(, + �IΛU��IJ/�/)��(� − ���M�) 
3.4. The Fourth Method 

In (1) putting X = XIJ, R = RIJ, and β =IJ/� and substitute in (6) Q���01 = ����� + (�/�)���/(, + �(�/�)���/)��(� −������)R:  
(IJ/�/�IJ)��IJ/�/� + (IJ/�/�IJ)��IJ/�/(, + �I(IJ/�/�IJ)��IJ/�/)��(� − �IJIJ/�����) 

Multiply with IJ, the equation become: 

	IJ(IJ/�/�IJ)��IJ/�/� + IJ(IJ/�/�IJ)��IJ/�/(, + �IJ(IJ/�/�IJ)��IJ/�/)��(� − �IJIJ/�����) 
= ��M� + IJ]J��IJ/�/(, + �IJ]J��IJ/�/)��(� − ���M�) = ��0�NM�                                    (28) 

 

4. Numerical Example 

This example illustrate the performance of the proposed 
estimator, the real data example which was found in previous 

studies has been considered [3], where the sample size n=10, 
the number of independent variables p=5, k = Rβ + z∗, k = -
0.2685, R =(1, 1, 2, -2, -2), z∗∼�(0, σ}�). 

The R programme version 3.5.0 used to get the following 
results from it: 
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Table 1. The parameter coefficients and the bias for each estimator. 

Parameter Estimator b0 b1 b2 b3 b4 ����� 0.6921 0.6258 -0.1154 0.2866 0.0256 

���01 
0.4014 0.5695 -0.1543 0.3402 0.1252 
(-0.5985) (-0.4305) (-1.1543) (-0.6597) (-0.8748) 

��M� 
-0.0182 0.5359 -0.0344 0.2838 0.2104 
(-1.0181) (-0.4641) (-1.0343) (-0.7162) (-0.7896) 

���NM� 
0.0895 0.5568 -0.0199 0.2639 0.1735 
(-0.9104) (-0.4432) (-1.0199) (-0.7360) (-0.8264) 

��0�NM� 
0.0327 0.2607 0.2023 0.3145 0.1688 
(-0.9672) (-0.7393) (-0.7977) (-0.6855) (-0.8311) 

��M� (p = r) 
0.6921 0.6258 -0.1154 0.2866 0.0256 
(-0.3079) (-0.3741) (-1.1154) -0.7134) (-0.9743) 

��0�NM� (p = r) 
0.4014 0.5695 -0.1543 0.3402 0.1252 
(-0.5985) (-0.4305) (-1.1543) (-0.6597) (-0.8748) 

���NM� (p = r) 
0.4014 0.5695 -0.1543 0.3402 0.1252 
(-0.5985) (-0.4305) (-1.1543) (-0.6597) (-0.8748) 

 
The previous table shows the parameter coefficients and 

the bias for the least square estimator (����� ), the ordinary 
mixed estimator (���01), the principal component estimator 
(��M�), the stochastic restricted principal component (���NM�) 
which introduced in previous studies [3]. The modified 
stochastic restricted principal component which introduced in 
this paper (��0�NM�), and the principal component estimator in 
case of p=r (��M� (p = r)), the (���NM�) in case of p = r, and the 
(��0�NM� ) in case of p = r. The numbers between brackets 
represent the bias. The total mean square error (TMSE) 
criteria used to compare between the SRPC and the MSRPC. 
It represent the summation of the MSE for each estimator. It 
was 251.8384 for the SRPC and 8.6271 for the MSRPC. This 
is means that the new estimator (MSRPC) is better than the 
old estimator (SRPC). 

The previous results show that both estimators the old 
(���NM�) and the new (��0�NM�) are equivalent with the OLS 

estimator in case of r = p, the parameter coefficient, and the 
bias were the same in each case. A different results in case of 
r < p was found, where the TMSE in the old estimator was 
251.8384 greater than that TMSE 8.6271 in the new 
estimator. This mean, that the MSRPC estimator is better 
than the SRPC estimator.  

5. Application Case 

This application illustrate the performance of the proposed 
estimator. The data represent 1058 units of air conditioner 
that sailed from July 2007 to March 2013 in an Egyptian 
company called Pure Technology. The data has been 
decomposed into 23 different cases. Where the number of 
independent variables p=6, the population parameter � = (0.4, 0.45, 0.5, 0.3, 0.35, 0.6), k = Rβ + ϵ∗, k = 1.5, R 
=(1, 1, 1, 1, 1, 1), ϵ∗∼�(0, σ}�). The data were as follows: 

Table 2. The count of sales units of air conditioner at different cases. 

No. Profit/1000 (Y) 1.5 HP/b (x1) 2.25Hp/b (x2) 3Hp/b (x3) 1.5 Hp/c (x4) 2.25HP/c (x5) 3HP/c (x6) 

1 527.69 17 6 13 52 32 26 
2 244.4 3 0 0 3 1 2 
3 787.4 0 0 1 12 6 3 
4 517.43 30 15 7 47 21 21 
5 894.5 6 1 5 6 6 1 
6 1.56 0 0 0 0 3 1 
7 345.4 1 0 1 4 0 3 
8 261.831 0 0 0 0 2 6 
9 -0.168 0 0 0 2 0 1 
10 585.668 4 0 0 1 4 6 
11 9.64 5 0 1 2 4 16 
12 46.997 20 15 11 29 26 29 
13 3.657 1 2 2 3 0 1 
14 22.733 14 9 5 17 9 10 
15 50.449 45 13 11 37 29 21 
16 4.465 2 0 1 2 3 3 
17 3.22 0 0 1 4 3 1 
18 4.882 1 1 1 5 1 3 
19 3.000 0 1 0 2 3 3 
20 16.682 2 1 2 1 8 28 
21 13.650 3 1 8 2 5 16 
22 11.7042 21 2 2 7 11 8 
23 22.232 9 5 4 12 28 62 

(Collected from an Egyptian air conditioner Company called Pure Technology [10]). 
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where: 
1. 1.5 HP/b represent the air condition with power 1.5 

horse and it is hot and cold. 
2. 2.25 HP/b represent the air condition with power 2.25 

horse and it is hot and cold. 
3. 3HP/b represent the air condition with power 3 horse 

and it is hot and cold. 

4. 1.5 HP/c represent the air condition with power 1.5 
horse and it is cold. 

5. 2.25 HP/c represent the air condition with power 2.25 
horse and it is cold. 

6. 3 HP/c represent the air condition with power 3 horse 
and it is cold. 

Table 3. The correlation matrix between the variables. 

Variable Y x1 x2 x3 x4 x5 x6 

Y 1.0000 0.8530 0.9020 0.9050 0.9462 0.9180 0.6090 
x1  

1.0000 0.8529 0.7338 0.7959 0.7839 0.4121 
x2   

1.0000 0.7731 0.8314 0.7868 0.5014 
x3    

1.0000 0.8360 0.8391 0.5236 
x4     

1.0000 0.8524 0.4446 
x5      

1.0000 0.7809 
x6       

1.0000 

 
The previous table indicate that all independent variables 

have high correlations with the dependent variable. There are 
found a high correlations between the independent variables, 
this means that the multicollinearity problem has been found. 

To solve this problem (PCA) technique will be used. An 
addition information will be used to tell us that the 
summation of the profit for each type of the air conditioner is 
1500 pound. 

Table 4. The parameter coefficients and the bias for each estimator. 

Parameter Estimator b1 b2 b3 b4 b5 b6 ����� 0.2324 0.5373 1.1376 0.5826 -0.2216 0.2760 

���01 
0.2326 0.5365 1.1367 0.5829 -0.2217 0.2761 
(-0.1674) (0.0865) (0.6367) (0.2829) (-0.5717) (-0.3239) 

��M� 
0.2849 0.1389 0.1367 0.6294 0.3117 0.1627 
(-0.1151) (-0.3111) (-0.3633) (0.3294) (-0.0383) (-0.4373) 

���NM�  
0.2849 0.1388 0.1365 0.6294 0.3117 0.1628 
(-0.1151) (-0.3112) (-0.3635) (0.3294) (-0.0383) (-0.4372) 

��0�NM�  
0.2849 0.1389 0.1367 0.6294 0.3117 0.1627 
(-0.1151) (-0.3111) (-0.3633) (0.3294) (-0.0383) (-0.4373) 

��M� (p = r) 
0.2324 0.5373 1.1376 0.5826 -0.2216 0.2760 
(-0.1676) (0.0873) (0.6376) (0.2826) (-0.5716) (-0.3240) 

��0�NM� (p = r) 
0.2326 0.5365 1.1367 0.5829 -0.2217 0.2761 
(-0.1674) (0.0865) (0.6367) (0.2829) (-0.5717) (-0.3239) 

���NM� (p = r) 
0.2326 0.5365 1.1367 0.5829 -0.2217 0.2761 
(-0.1674) (0.0865) (0.6367) (0.2829) (-0.5717) (-0.3239) 

 
The previous table shows the parameter coefficients and 

the bias for the least square estimator (����� ), the ordinary 
mixed estimator (���01), the principal component estimator 
(��M�), the stochastic restricted principal component (���NM�) 
[3]. The modified stochastic restricted principal component 
which introduced in this paper (��0�NM�). And the principal 
component estimator in case of p = r (��M�  (p = r)), the 
(���NM�) in case of p = r, and the (��0�NM�) in case of p = r. The 
numbers between brackets represent the bias. The total mean 
square error (TMSE) criteria used to compare between the 
SRPC and the MSRPC. It represent the summation of the 
MSE for each estimator. It was 148.0862 for the SRPC and 
147.9901 for the MSRPC. This is means that the new 
estimator (MSRPC) is better than the old estimator (SRPC). 
A simulation study have done to assess this result. 

The previous results show that both estimators the old 
(���NM�) and the new (��0�NM�) are equivalent with the OLS 
estimator in case of r = p, the parameter coefficient, and the 
bias were the same in each case. A different results in case of 
r < p was found, where the TMSE in the old estimator was 
148.0862 greater than that TMSE 147.9901 in the new 

estimator. This mean, that the MSRPC estimator is better 
than the SRPC estimator. Moreover, this same result from the 
previous section has been got. 

6. Simulation Study 

A simulation study with 5000 replications has been done to 
check the results at different cases. The different cases of the 
sample size (n) was 10, 20, 30, 50, 100, and 200. The results 
of the restriction model (k) was 0, 1, and -1. The number of 
variables in the model (p) was 2, 3, 4, and 5. the number of 
components (r) were always less than the number of the 
variables (p). Constant values has been used for R, and the 
true parameters (�) where it consists of vector of 1�._. Data 
was distributed multivariate normally with vector of means � = 0�._ , and variance covariance matrix Ʃ . Ʃ has been 
chosen according to high correlations between variables 
(multicollinearity problem), it was: 

Ʃ = &81 28.816 ' 
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Ʃ = �100 63 76.549 47.2581 � 

6561 65.232 -55.755 -10.544

64 52.864 47.712
=

49 39.816

144

 
 
 Σ
 
 
 

 

81 64.152 56.826 40.635 82.26

64 51.016 36 72

= 49 31.57 63

25 45.1

100

 
 
 
 Σ
 
 
 
 

 

TMSE was chosen as a criterion for all cases (180 case). 
The main steps for each case were: 

1. Generate p independent variables which distributed 
multivariate normally with mean �  and variance 
covariance matrix Ʃ. Generate one dependent variable, 
which distributed normally with mean 0 and variance 1. 

2. Calculate the SRPC and the MSRPC estimators. 
3. Calculate the TMSE criterion for each estimator. 
4. Replicate the previous steps 5000 times. 
5. Calculate the Mean of TMSE for each estimator. 
6. Calculate the difference of the TMSE between the two 

estimators. 
The results of the simulation has been indicated as follows 

in the next table: 

Table 5. The difference of the TMSE between the SRPC estimator and the MSRPC estimator. 

Estimator p, r n, k 
p=2 p=3 p-4 

r=1 r=1 r=2 r=1 r=2 r=3 

SRPC - MSRPC 

n=10 
k=0 4.28E-02 8.74E-01 2.63E-02 2.28E+05 -1.11E+03 1.44E-01 
k=1 1.54E-02 2.03E-02 2.26E-02 -3.68E+06 -1.54E+02 1.77E+00 
k=-1 7.24E-02 9.95E-01 4.73E-02 6.98E+07 -1.82E+05 1.02E+01 

n=20 
k=0 1.49E-02 6.82E-03 6.16E-03 1.14E+05 3.35E+01 5.61E-03 
k=1 5.64E-03 4.44E-03 4.09E-03 -1.13E+06 -1.46E+01 4.15E-03 
k=-1 2.40E-02 9.33E-03 8.55E-03 3.78E+05 1.55E+02 7.22E-03 

n=30 
k=0 8.79E-03 3.73E-03 3.51E-03 1.07E+06 3.71E+01 2.77E-03 
k=1 3.40E-03 2.41E-03 2.30E-03 -1.55E+06 -1.46E+00 2.05E-03 
k=-1 1.43E-02 5.06E-03 4.72E-03 -1.03E+06 -1.11E+01 3.46E-03 

n=50 
k=0 4.91E-03 1.96E-03 1.88E-03 2.16E+04 2.48E-03 1.33E-03 
k=1 1.92E-03 1.28E-03 1.22E-03 -8.01E+05 1.81E-03 1.00E-03 
k=-1 7.85E-03 2.65E-03 2.55E-03 -1.19E+07 2.88E-03 1.70E-03 

n=100 
k=0 2.34E-03 8.98E-04 8.64E-04 -1.94E+06 9.23E-04 5.83E-04 
k=1 9.21E-04 5.84E-04 5.66E-04 1.30E+06 6.64E-04 4.38E-04 
k=-1 3.73E-03 1.19E-03 1.17E-03 9.50E+07 1.17E-03 7.38E-04 

n=200 
k=0 1.13E-03 4.26E-04 4.14E-04 -3.42E+05 4.24E-04 2.72E-04 
k=1 4.51E-04 2.78E-04 2.72E-04 -1.20E+04 3.09E-04 2.03E-04 
k=-1 1.81E-03 5.69E-04 5.56E-04 1.61E+05 5.41E-04 3.43E-04 

Table 6. Contiuned. 

Estimator p, r n, k 
p=5 

r=1 r=2 r=3 r=4 

SRPC - MSRPC 

n=10 
k=0 1.13E+03 1.46E+02 4.22E+02 1.89E+02 
k=1 5.16E+01 3.61E+01 5.98E+01 3.77E+01 
k=-1 6.57E+03 5.18E+02 9.91E+01 1.33E+02 

n=20 
k=0 3.72E-02 3.26E-02 3.23E-02 2.47E-02 
k=1 2.79E-02 2.48E-02 2.28E-02 1.84E-02 
k=-1 5.04E-02 4.56E-02 3.82E-02 3.11E-02 

n=30 
k=0 1.42E-02 1.20E-02 1.02E-02 8.26E-03 
k=1 1.09E-02 9.51E-03 7.90E-03 6.64E-03 
k=-1 1.74E-02 1.47E-02 1.23E-02 1.02E-02 

n=50 
k=0 5.99E-03 4.71E-03 3.67E-03 3.06E-03 
k=1 4.69E-03 3.75E-03 2.89E-03 2.43E-03 
k=-1 7.25E-03 5.77E-03 4.48E-03 3.73E-03 

n=100 
k=0 2.39E-03 1.70E-03 1.24E-03 9.57E-04 
k=1 1.90E-03 1.35E-03 9.69E-04 7.60E-04 
k=-1 2.92E-03 2.07E-03 1.48E-03 1.15E-03 

n=200 
k=0 1.08E-03 7.03E-04 4.91E-04 3.53E-04 
k=1 8.59E-04 5.58E-04 3.92E-04 2.82E-04 
k=-1 1.31E-03 8.56E-04 5.91E-04 4.29E-04 

 
The previous table indicate that in most of the cases, the 

SRPC estimator have values greater than the MSRPC 
estimator. Most of cases which have the opposite results 
found in (p = 4, k = 1). The number of these cases reach to 15 
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case. These opposite results may be found because of the 
negative correlations between the independent variables. So 
the MSRPC estimator is better than the SRPC estimator with 

percentage 91.67% &��������� '. 

7. Summary 

The stochastic restricted principal components (SRPC) 
regression estimator ignoring the number of components 
(orthogonal matrix IJ ) that has been chosen to solve the 
multicollinearity problem in the data matrix (X). This paper 
introduced another estimator which uses matrix IJ  to get 
more accurate results. The new estimator uses any number of 
components that have been required. A numerical example 
and an application were given to illustrate the performance of 
the proposed estimator. The previous results show that, the 
TMSE for the old estimator is greater than the TMSE on the 
new estimators, this is means that there was found more 
accuracy in making decision when using three components. 
Both estimators, the old and the new were equivalent with 
the OLS estimator in case of r = p, regarding the parameters 
coefficients, bias values, and the MSE. The simulation results 
indicate the same results that have been got from the 
numerical example (real data) and the application in many 
different cases. 
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