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Abstract: Statistics is one of the most vibrant disciplines where research is inevitable. Most researches in statistics are 

concerned with the measurement of values of variables in order to make valid conclusions for decision making. Often, 

researchers do not use the exact values of the variables since it’s difficult to establish the exact value of variables during data 

collection. This study aimed at using simulation studies to ascertain the power of Simulation Extrapolation (SIMEX) in 

correcting the bias of coefficients of a logistic regression model with one covariate measured with error. The corrected 

coefficient values of the model can then be used to predict the exact values of the explanatory variable. The Mean Square Error 

and the coverage probability were used to test the adequacy of the different model's estimates. The study showed that the use 

of SIMEX with the quadratic fitting method would give significantly good estimates of the model’s predictors’ coefficients. 

For further studies, the researcher recommends the study to be done using other models and with multiple covariates measured 

with errors. 
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1. Introduction 

Logistic regression is a widely used tool in the analysis of 

the data when the response variable is binary in nature (for 

example the presence or absence of a disease). The response 

variable is explained by the different explanatory variables in 

the model. The different coefficients on the explanatory 

variables are the gradients with respect to the variables they 

are associated with. The role of regression analysis is to 

correctly estimate these coefficients. Correct estimates of the 

model coefficients can only be gotten when the explanatory 

variables are measured without errors. However, the normal 

assumption that the explanatory variables have no error does 

not always hold water. When these explanatory variables are 

measured with errors, then the gradient estimates are biased. 

The ��� gradient estimate for a covariate measured with error 

will be; 
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���

�� � 
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Fuller refers to 
 � �	


�	
���

 as the reliability ratio [1]. 

Various methods have been proposed by different 

researchers to correct this bias that is associated with 

measurement errors of the covariates. Cook and Stefanski 

explained the simulation extrapolation (SIMEX) method 

which is one of such methods [2]. This study used 

simulation studies by simulating a true model then 

introducing errors in one of the covariates to come up with 

a naive model that was later used in Simulation 

Extrapolation procedure. The researcher used the R - 

SIMEX library for extrapolation. 

2. Methodology 

2.1. Measurement Errors 

Measurement error in a scenario of continuous data is 

classified into either Berkson measurement errors or 
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Classical measurement errors. Freedman et al. claimed that 

the fundamental difference between the two kinds of 

measurement errors is based on the distribution assumed by 

the errors [3]. 

2.1.1. Classical Error Model 

According to Stefanski and Cook, Classical error model 

assumes a distribution for the observed values given the true 

values (��|��)  [4]. This model also assumes that 

measurement errors are independent of the true values and 

the explanatory variable X is incorrectly recorded by W. 

Babanezhad, expressed the classical model as;  

� � � + �                                    (2) 
Where U is the measurement error and is assumed to be 

independent of X [5]. 

2.1.2. Berkson Error Model 

The basic assumption in Berkson error model is that the 

model assumes a distribution for the true values given the 

observed values (��|��)  and that measurement error is 

always independent of the observed explanatory variable 

W. Babanezhad, expressed the Berkson model as follows 

[5]; 

� � � + �                                (3) 
Rudemo, Ruppert and Streibig suggested that Berkson 

error model has proved to be very efficient in medical and 

agriculture studies [6]. 

2.2. Measurement Error in a Logistic Regression Model 

According to Stefanski, logistic regression is one of the 

non-linear models that are often concerned with 

measurement error [7]. We consider a logistic regression 

model for the dependence of a binary response Y with the 

scalar predictor X in which; 

Pr(� � 1|�) � �(�� + ���)               (4) 

Where; 

H(θ) � �
�� !" (#$)                               (5) 

Given the data set (�� , ��), � � 1,2, … , (  the maximum 

likelihood estimator needs numerical maximization. We 

suppose that the latent variable ��  is unobservable, but the 

quantity �� � �� + ��  is observed. Since the MLE’s don’t 

have close-form expression, the effect of replacing X with W 

in logistic regression is not easily determined, though 

Stefanski claims that the estimate of � is attenuated as in the 

case of linear regression [7]. 

In logistic regression, estimation when the measurement 

error is normally distributed proceeds under the assumption 

that variance of the error is known or it is independently 

estimable, for example, replicate measurement. 

Next, we consider the functional version of logistic 

measurement error model with errors U which are normally 

distributed with known variance )*
+ . Here the density 

function of (�� , ��) is given by; 

,-.(/, 0|��, �� , ��) � {�(�� + ����)}3{1 − �(�� + ����)}�#3 �
�5
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;                                    (6) 

Where ∅() is the standard normal density function. 

2.3. Simulation Extrapolation (SIMEX) 

Cook and Stefanski were the first researchers to 

suggest the SIMEX method and it was developed further 

by Stefanski and Cook and Carroll and Küchenhoff [4, 8]. 

Shang explains the simulation extrapolation (SIMEX) 

method as a technique used for correction of 

measurement error through simulation [9]. In the lines of 

Weeding, this method is used when the measurement 

error variance can be accurately estimated from 

replicated measurement or from validation data or the 

variance is already known [10]. The method further 

assumes that there exists an estimator which is consistent 

when all variables are measured without error. Such an 

estimator is referred to as the naive estimator when it is 

used despite the measurement error. 

Küchenhoff, Mwalili, and Lesaffre note that SIMEX 

utilizes the relationship of measurement error variance )<
+ to 

the bias of the effect estimators while disregarding the 

measurement error [11]. As a result, SIMEX estimator is 

obtained by adding additional measurement error to the 

already observed data in the resampling stage, establishing a 

relation of the error-induced bias against the variance of the 

added measurement error and extrapolating back to a case 

where no measurement error is present. We then define the 

following function; 

)<
+ → �∗()<

+) =: ?()<
+)                           (7) 

Where �∗ is the limiting value of the naive estimator as the 

sample size increases to infinity. The result of consistency is 

that ?(0)  =  � . Mwalili suggests that more often ?()<
+) 

declines in its absolute value as )<
+ increases [12]. G()<

+ ) 

matches to the attenuation of the projected effect induced by 

the measurement error. The SIMEX method is built on the 

parametric estimation of the function ?()<
+)  ≈  ?()<

+;  D) for 

instance, in a quadratic approximation; 

()<
+, Γ) = F��F�)<

+ + F+()<
+)+               (8) 

2.4. SIMEX in Simple Linear Regression  

SIMEX method is best illustrated by the use of simple 

linear measurement error regression model. For illustration 

purposes, we consider the following model; 

G(�|�) = �� + ���                              (9) 

We also consider that �∗ = � + )*�  instead of X is 

observed where U is normally distributed with mean zero and 

variance 1 and that the measurement error variance )<
+  is 

known. Babanezhad, noted that the ordinary least squares 

regression does not estimate �� but it estimates; 
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  to as reliability ratio [1]. )�
+ 

denotes the variance of � . Now, consider adding by 

simulation, additional error with mean zero and variance )<
+H 

to �∗resulting in �∗∗, for fixed H ≥ 0 so that the variance of 

�∗∗ is )<
+ + )<

+H = (1 + H))<
+ Then, an ordinary least squares 

regression of Y on �∗∗consistently estimates the following 

quantity. 

��∗
∗ (H) =

�	



�	

�(��J)��


 ��                        (11) 

We observe that at H	 = 	−1, ��∗∗ (H) = �� i.e, ��∗∗ (−1) =�� which, in this case, will represent a situation with no 

measurement error. Hence, the rule of thumb is to fit a 

regression model of ��∗∗ (H)	against	H and then extrapolate the 

graph back to where H	 = 	−1. 
Hasan et al. pointed out that without loss of generality, for 

any set of data, the SIMEX method uses simulation to add 

more measurement error with a variance of )<+H to the error 

susceptible variable [13]. As a result, the measurement error 

then becomes (1 + H))<+ which will lead to an estimator that 

converges to ?((1 + H))<+) for naive estimation. A repetition 

of this simulation procedure for a fixed grid of H’M gives an 

estimator DN of the parameters of ?()<+, Γ) by least squares. 

During the extrapolation stage, the function ?()<+; 	D)  is 

extrapolated to 0. SIMEX estimator is demarcated by 

?(0;	DN)	that is, setting H	 = 	−1 in ?((1 + H))<+). For cases 

where ?()<+; 	D) is a good estimate to the function ?()<+), 
then Mwalili claims that SIMEX criteria are approximately 

consistent [12]. 

2.5. Jackknife Variance Estimation  

One drawback of SIMEX procedure is that the error 

variance should be known or it is independently and correctly 

estimable for instance using the replicate measurement. A 

study by Tsamardinos et al. gives more insight into the 

jackknife variance estimation procedure which is otherwise 

referred to as a leave - one - out method [14]. It is an 

alternative to other variance estimation procedures such as 

bootstrap method and the delta method. According to Shao 

and Dongsheng the idea in jackknife variance estimation is to 

sequentially delete one observation from the dataset and then 

calculating the estimator ON� n times [15]. This implies that for 

a sample of size n we have ( jackknife estimates. Suppose 

we have n observations, we compute n estimates by 

sequentially omitting one observation from the dataset and 

then estimating ON on the (	 − 	1 observations that remained. 

The building blocks of a jackknife variance estimate are 

basically the n differences [4]. i.e. 

∆�	 = 	ON(Q#�), (�) 	− 	ON(Q#�), (. ); 	�	 = 	1, 2, 3, … , ( . The 

normal jackknife variance estimate is 
Q#�
Q ∑ ∆+Q�T�  . Using ( 

jackknife estimates; ON(�), ON(+), ON(U), … , ON(Q), We then estimate 

the standard error of the estimator as; 

MVWXYZ[ =\Q#�
Q ∑ (ON(�) − ON̅(.))+Q�T�                  (12) 

3. Results and Discussions 

3.1. Data Simulation 

To explore the power of SIMEX for error correction, the 

researcher simulated two variables (x.true – random 

exponential values and z – normal random variables) each 

with size 200. These two variables were used to come up 

with a logistic regression with variable y denoting the 

response variable with a binary outcome. A true model was 

then generated using a generalized linear model (glm). To 

archive the objective of the study, the researcher introduced 

errors with a standard error of 2 to x.true variable to give the 

implication of x.measured (error-prone covariate) while 

variable z remained unchanged. A naive model was then 

developed with predictor variables x. measured and z. The 

following part of the code was used for these tasks; 

n=200 

x.true = rexp (n, 1/3) # True value of x 

z = rnorm (n, 30, 5) 

eta = exp (5 - 0.5*x.true - 0.1*z) 

py = eta/ (1+eta) 

y = rbinom (n, 1, py) # True value of y 

#true logit model 

logit. model. true = glm (y ~ x.true + z, family = binomial) 

#building the naive model 

x.sd_me = 2 

x.measured = x.true + x.sd_me * rnorm (n) 

logit.model.naive = glm (y ~ x.measured + z, x = TRUE, 

family = binomial) 

The true coefficients from the original model were as 

follows; �� = 5, �� = −0.5, _(`	�+ = −0.1 

3.2. SIMEX Models 

The naive model (model having one covariate with error) 

was used to fit SIMEX models with the quadratic and linear 

fitting method. The simulation was done for three times where 

for every lambda the number of iterations was 500, 1000 and 

2000 respectively. The model coefficients were stored for 

every iteration and an average got for every lambda. These 

coefficients were then used to check for model diagnostics 

such as the Root Mean Square Error and the coverage rate. 

3.3. Results 

In this study, the true model was used as the standard 

model for making comparisons and generation of the 
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confidence interval. The comparison was made in regard to 

the other three models (naive model, quadratic model, and 

the linear model). The results of the various simulations are 

represented in table 1 below. The study did not show a 

significant change in the estimates in spite of the increased 

number of iteration. The SIMEX model using the fitting 

method as quadratic performed well with all its RMSE being 

the smallest among all models. In addition, the SIMEX 

model using quadratic fitting method had the highest 

coverage rate among the three models. Figure 1 shows the 

performance of SIMEX using quadratic as the fitting method. 

The three graphs demonstrate a consistent trend and 

extrapolation of the graph to the value of H	 = 	−1 gives an 

approximate of the true coefficients as �� � 4.7661, �� �

40.4160, _(`	�+ � 40.0984  which are approximate to 

�� � 5, �� � 40.5	_(`	�+ � 40.1 . The naive model 

performed poorest since it was the model that we initially 

introduce the measurement error. 

 

Figure 1. Plots for the estimates of the SIMEX model using the quadratic fitting method. 

 

Figure 2. Plots for the estimates of the SIMEX model using the linear fitting method. 
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Table 1. The results for model estimates, Standard Error, Root Mean Square Error and Coverage Rate for the different models. 

Estimator Iterations 
Intercept (fg) For x. measured (fh) For Z (fi) 

Estimate SE RMSE CR Estimator SE RMSE CR Estimator SE RMSE CR 

True Model 

500 

5.146 1.252 0.000 0.954 -0.516 0.086 0.000 0.942 -0.103 0.038 0.000 0.946 

Naive Model 4.235 1.158 1.049 0.908 -0.301 0.058 0.226 0.198 -0.092 0.036 0.018 0.952 

Quadratic Model 4.795 1.307 0.695 0.934 -0.424 0.090 0.119 0.790 -0.098 0.039 0.016 0.938 

Linear Model 4.491 1.217 0.848 0.930 -0.355 0.070 0.175 0.514 -0.095 0.037 0.016 0.952 

True Model 

1000 

5.1023 1.247 0.000 0.954 -0.5103 0.087 0.000 0.952 -0.1021 0.039 0.000 0.956 

Naive Model 4.2130 1.158 1.0282 0.910 -0.2953 0.056 0.225 0.195 -0.0919 0.036 0.017 0.958 

Quadratic Model 4.7661 1.312 0.692 0.943 -0.4160 0.088 0.119 0.796 -0.0984 0.040 0.017 0.946 

Linear Model 4.4651 1.218 0.835 0.933 -0.3487 0.067 0.175 0.528 -0.0948 0.038 0.016 0.955 

True Model 

2000 

5.1007 1.267 0.000 0.949 -0.3811 0.089 0.000 0.948 -0.1172 0.039 0.000 0.950 

Naive Model 4.7444 1.147 1.086 0.915 -0.2486 0.058 0.228 0.2105 -0.1164 0.036 0.018 0.955 

Quadratic Model 4.7605 1.309 0.715 0.933 -0.4179 0.092 0.123 0.808 -0.0981 0.040 0.016 0.940 

Linear Model 4.4592 1.211 0.879 0.931 -0.3504 0.070 0.178 0.527 -0.0944 0.037 0.017 0.948 

SE = Standard Error. 

RMSE = Root Mean Square Error. 

CR = Coverage Rate based on Standard Error (SE). 

4. Conclusion and Recommendation 

The study confirmed that the SIMEX method is ideal in 

correcting errors for the covariates measured with errors. For 

the two SIMEX fitting methods that were considered, the 

quadratic fitting method proved to be the best having the 

smallest RMSE among the models considered and having the 

highest coverage probability. The high coverage probability 

means that many of the predicted values will fall within the 

95% confidence interval. Consequently, the study proved the 

power of simulation extrapolation as a method of error 

corrections. Hence for independent variables which are 

collected with measurement errors, the researcher should 

consider the SIMEX method with the fitting method as 

quadratic to correct the errors and have the correct estimates 

of the model’s coefficients that will give better 

approximations of the response variable. 

The study recommends the use of the SIMEX method with 

the fitting method as the quadratic for correcting covariates 

with errors. Further studies can be done using other statistical 

models to reaffirm the claims from this study. 
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