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Abstract: The present article considers a new function to propose a new lifetime distribution. The new distribution is 

introduced by mixing up a linear system of the two logarithms of cumulative hazard functions. The proposed model is called 

new extended flexible Weibull distribution and is able to model lifetime with bathtub shaped failure rates and offers greater 

flexibility. Therefore, it can be quite valuable to use an alternative model to other existing lifetime distributions, where, 

modeling of real data sets with bathtub shaped failure rates are of interest. A brief description of the statistical properties along 

with estimation of the parameters through maximum likelihood procedure are discussed. The potentiality of the proposed 

model is showed by discussing two real data sets. For these data sets, the proposed model outclasses the Flexible Weibull 

Extension, Inverse Flexible Weibull Extension and Modified Weibull distributions. 
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1. Introduction 

In the practice of analyzing real phenomena of nature one 

frequently uses the Rayleigh, Exponential, or Weibull 

distributions. These models possess numerous desirable 

properties and nice interpretations of its parameters enabling 

them to be utilized frequently. Between these lifetime models, 

Weibull distribution is the most prominent distribution for 

modeling real phenomena of nature. The Weibull model was 

originally introduced by Weibull [19], a Swedish physicist, and 

utilized it to represent the distribution of breaking strength of 

materials. Weibull model also has the shape and scale 

parameters, offering characteristics of both the exponential and 

Rayleigh distributions. In recent past years, the Weibull model 

becoming very popular in modeling lifetime data, because in 

the presence of censoring which makes it much easier to 

handle, at least numerically. The cumulative distribution 

function (CDF) of the Weibull model is given by. 

( ) 1  ,             , , 0.zG z e z
αβ α β−= − >               (1) 

The Weibull model is very useful in modeling real 

phenomena exhibiting monotonic failure rates. But, the 

Weibull model is inappropriate to use in modeling data 

having non-monotonic failure rates. Among non-monotonic 

failure rate function, the bathtub shaped failure rate is very 

useful and has a number of applications in the literature. For 

example, in bio-analysis the human mortality rate and in 

reliability engineering the lifecycle of electronic components 

is observed to have a bathtub shaped failure rate function. 

Due to practical utility in bio and reliability disciplines, 

numerous generalizations of Weibull distribution have been 

proposed in the literature aiming to improve its 

characteristics and to model real world scenario with non-

monotonic failure rate functions. These generalizations, 

including a statistical model with bathtub failure rate studied 

by Xie and Lai [20], Sarhan and Zaindin [17], Beta-Weibull 

(BW) distribution of Famoye et al. [11], Kumaraswamy 

Weibull (KW) distribution proposed by Cordeiro et al. [10], 

Generalized modified Weibull (GMW) distribution proposed 

by Carrasco et al. [9], Exponentiated modified Weibull 

extension (EMWEx) distribution introduced by Sarhan and 

Apaloo [16], Flexible Weibull (FWEx) distribution of 

Bebbington et al. [8], Generalized Flexible Weibull 

Extension (GFWEx) distribution studied by Ahmad and Iqbal 

[1], other extensions of Weibull model proposed by Ahmad 

and Hussain (2017) are [2], [3], [4], [5] and [6], respectively. 

For a concise review of these distributions one may call to 

Pham and Lai [15] and Murthy et al. [14]. These distributions 
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have numerous applications including reliability analysis, 

clinical studies, applied statistics and life testing experiments 

etc. Gurvich et al. [12] proposed a new class of aging 

distributions defined by the CDF given by. 

( ) ( )
1 ,    , 0.

F z
G z e z

β β−= − >              (2) 

Where ( )F z is monotonically increasing function of .z  It is 

a very useful method to mix two survival functions and 

create a new function as: 

( ) ( ) ( )1 1 2 2( ) 1 ,S z S z S zη η= + −  

Where 1 20 , 1,η η< <  this method of suggesting new 

functions is known as mixture of distributions, or 

( ) ( )1 1 2 1( ) ,           0 , > .S z S z S zη ψ η ψ= +             (3) 

One may also generate a new function by collaborating 

two cumulative hazard functions as: 

( ) ( )1 2( ) ,H z H z H zβ θ= +                      (4) 

In term of cumulative hazard function (CHF), the CDF can 

be written as 

( ) ( )
 ,            1      z>0, 

H z
G z e

−= −                (5) 

where ( )H z fulfils the conditions stated below 

a ( )H z is nonnegative and increasing function of z 

b 0 ( ) (lim ? 0 )  lim .z zH and H zz→ →∞→ → ∞  

The probability density function (PDF) associating to (5) 

has the following expression. 

( ) ( ) ( )
 ,                0. 

H z
g z h z e z

− >=  

The modified Weibull distributions presented by Xie and 

Lai [20], Sarhan and Zaindin [17] and Almalki and Yaun [7] 

belongs to the class defined in (5). Here in (5), the ( )H z is 

bounded. On the other hand, in this article, effort have been 

made to produce a new function annoying to relax the 

boundary conditions. Hence, in this article  ( )log H z  is used 

rather than ( )H z . Because, it might be more exciting to use

 ( )log H z rather ( )H z in order to advance a very flexible 

model. Hence, one may write (4) as 

( ) ( )21( ) ,H z H z H zβ θ= ×                       (6) 

The expression provided in (6) can be re-write as 

1 2( ) ( ) ( ).zlogH logH l zogHzβ θ= +               (7) 

A mixture of the two logarithm of cumulative hazard 

functions, such as zγ
 and 

2z are proposed to introduce a new 

very flexible lifetime model. So, the expression given in (7), 

can be written in the following form. 

2+ ( ) .z zH z e
γβ θ=                              (8) 

By substituting (8) in (5), one can easily get the CDF of the 

new extended flexible Weibull (NEx-FW) distribution. The 

suggested model is capable of modeling data with bathtub 

failure rate. The present article is designed as: Section 2, offers 

the definition and graphical display of the new model. Section 

3, contains the basic statiatical properties. Section 4, 5 and 6, 

derives the moment generating function, probability generating 

function and factorial moment generating function of the NEx-

FW distribution. Section 7 and 8, contains the estimation of the 

parameters and density functions of the order statistics. Section 

9, offers the analysis to real data sets. Finally, section 10, 

contains concluding remarks. 

2. New Extended Flexible Weibull 

Distribution 

The CDF of the NEx-FW distribution is given by 

( )
( )2+

 ; 1?   , 0.
z z

eG z e z

γβ θ
γ β θ γ β θ−, , = − , , >，      (9) 

The probability distribution function (PDF) corresponding 

to (9) is given by 

( ) ( ) ( ) ( )2
2 +

+  ; 2 ? .
z z

z z eg z z z e e

γγ β θβ θγγ β θ γβ θ−1 −, , = +  

The survival function (SF) of the NEx-FW distribution is 

( )
( )+

2

 
,; ? 

z z

e
S z e

γβ θ

γ β θ −, , =  

with HF 

( ) ( ) ( )2+
; 2 ? .

z z
h z z z e

γβ θγγ β θ γβ θ−1, , = +              (10) 

The figure 1 displays the HF of the NEx-FW distribution 

for different values of parameters. 

 

Figure 1. HF of the New Extended Flexible Weibull distribution, for different 

values of parameters. 
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3. Basic Properties 

This section of the paper covers the basic statistical 

properties of the NEx-FW distribution. 

3.1. Quantile and Median 

The expression for the thq quantile qz  of the NEx-FW 

distribution is given by  

( ){ }2 + log log 1 0.q qz z qγβ θ − − − =             (11) 

Using 0.50,q = in (11), one can easily obtain the median of 

the NEx-FW distribution. Also, putting 0.25,q = and 

0.75,q = in (11), one may get the 1
st
 and 3

rd
 quartiles of the 

NEx-FW distribution, respectively.  

3.2. Generation of Random Numbers 

The formula for generating random numbers from NEx-

FW distribution can be derived as 

( );G z uγ β θ, =,  

where ( ) 0,1u U∼ . After simplification, this yields 

( ){ }2 log log 1 0.z z uγβ θ+ − − − =  

The expression for generating random numbers from the 

proposed distribution is not closed form. Therefore, the 

random numbers from the proposed model can be generated 

using computer software.  

3.3. Moments 

If Z~ NEx-FW ( ); ,z γ β θ, ,  then the 
thr  moments of Z is 

derived as 

( )
0

/  ;r
r z z dzµ γ β θ

∞

= , ,∫  

( ) ( ) ( )2
2 +

+  

0

/  2 ?
z z

z zr e
r z z z e e dz

γγ β θβ θγµ γβ θ
∞

−1 −= +∫  

( ) ( ) ( )2
1

+/

0 0

1
  2 ?

!

i i
z zr

r

i

z z z e dz
i

γβ θγµ γβ θ
∞ +∞

−1

=

 −   = +  
   

∑ ∫  

( ) ( ) ( ) ( ) 2

0

/ 1

0 0

1 1
 2

! !

i i j
ir j z

r

i j

i
z z z e dz

i j

θγ γβ
µ γβ θ

∞∞ ∞
++ −1

= =

 − +  = + 
  

∑∑ ∫
 

( ) ( ) ( ) ( ) ( )2 21 1 1

0 0

/ 11

0 0

1 1
 2  .

! !

i i j
r j i iz r j z

r

i j

i
z e dz z e dz

i j

γ θ θγβ
µ γβ θ

∞ ∞∞ ∞
+ + − + ++ −

= =

 − +  = + 
  

∑∑ ∫ ∫                            (12) 

Using the definition of gamma function (Zwillinger [21]) in the following form, 

1

0

,       , 0.z z txz x t e dt z x

∞
−Γ = >∫   

Using the above definition of gamma function in (12), and finally, one may get 

( ) ( )
( )

( )( )
( )

( )( )
21

0 0 22

/

1 2

21 1 2
 + .

! !
12 1

i i j

r r jr j
i j

r j r j

i

i j
ii

γγ

γ γ
β

µ γβ θ
θθ

∞ ∞

+ ++ +
= =

  + + + + Γ   Γ   − +     =  
 ++ 
 

∑∑                              (13) 

4. Moment Generating Function 

If Z~  NEx-FW ( ); ,z γ β θ, ,  then the moment generating 

function of Z is derived as 

( ) ( )
0

;tz
z t e dg zM zγ β θ

∞

, ,= ∫  

( ) ( )
0 0

!
;

r
r

z

r

t
M t z dz

r
g z γ β θ

∞∞

=

, ,=∑ ∫  

( ) /

0

 
!

r

z r

r

t
M t

r
µ

∞

=

=∑ .                                   (14) 

By using (13), in (14), one may have the proof of the NEx-

FW distribution. 

5. Probability Generating Function 

The probability generating function (PGF) of NEx-FW 

distribution is derived 

( ) ( )
0

;zG dg z zγγ βγ θ
∞

, ,= ∫  
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( ) ( ) ( )
0 0

log
 

!
;

r
r

r

gG z dz
r

z γ β θ
γ

γ
∞∞

=

, ,=∑ ∫  

( ) ( ) /

0

log
 .

!

r

r

r

G
r

γ
γ µ

∞

=

=∑                                  (15) 

On substituting (13), in (15), one may get the expression 

for the PGF of NEx-FW distribution. 

6. Factorial Moment Generating 

Function 

The factorial moment generating function (FMGF) of 

NEx-FW distribution can be derived as 

( ) ( ) ( )0

0

1 1 ;
z

g zH dzγ βδ θδ
∞

+ = + , ,∫  

( ) ( ) ( )0

0 0

;
log 1

1  
!

r
r

r

H z dz
r

g z β θ
δ

δ γ
∞∞

=

, ,
+

+ =∑ ∫  

( ) ( ) /
0

0

log 1
1  .

!

r

r

r

H
r

δ
δ µ

∞

=

+
+ =∑              (16) 

By substituting (13), in (16), result in proof of the FMGF 

of NEx-FW distribution. 

7. Estimation 

This section of the article, concern with estimation of the 

model parameters through maximum likelihood (ML) 

procedure. Let 1 2, Z, , kZZ ⋅⋅⋅  are randomly sampled from NEx-

FW distribution with parameters ( )γ β θ, , . Then, the 

corresponding log-likelihood function of this sample is 

( ) ( ) ( )2
2

1 1 1

ln log 2 ?+?  .
i i

k k k
z z

i i i i

i i i

L z z z z e
γβ θγ γγβ θ β θ +−1

= = =

= + + −∑ ∑ ∑                                 (17) 

By attaining the partial derivatives of the expression in (17) on parameter, and then equating to zero, one may have 

( )
( )21

1
1 1 1

ln
 .

2

i i

k k k
z zi

i i

i i ii i

zd L
z z e

d z z

γγ β θγ γ
γ

γ
β γβ θ

− +

−
= = =

= + −
+

∑ ∑ ∑                                            (18) 

( )
( )2

2 2

1
1 1 1

2ln
 .

2

i i

k k k
z zi

i i

i i ii i

zd L
z z e

d z z

γβ θ

γθ γβ θ
+

−
= = =

= + −
+

∑ ∑ ∑                                               (19) 

( )( )
( ) ( ) ( ) ( )

2
1 1

 

1
1 1 1

logln
log  log .

2

i i

k k k
i i i z z

i i i i

i i ii i

z z zd L
z z e z z

d z z

γ
γ γ

β θγ γ
γ

γ
β β β

γ γβ θ

− −
+

−
= = =

+
= + −

+
∑ ∑ ∑                           (20) 

It is perceived that, the expressions given in (18)-(20) do 

not hold solution in closed forms; so, the estimates of the 

unknown parameters can be obtained numerically by using 

the iterating procedure. The “SANN” algorithm in R 

language is used to estimate the parameters numerically. 

8. Order Statistic 

Consider a sample say 1 2, , , ZkZZ ⋅ ⋅ ⋅ selected randomly 

from NEx-FW distribution with parameters ( ) ,γ β θ, ,  having 

ordered values 1: 2: :, , ,  k k k kZ Z Z⋅⋅ ⋅ . Let ( )1:k
Z represents the 

smallest of 1: 2: :, , ,  k k k kZ Z Z⋅⋅ ⋅ , similarly, ( )2:k
Z represents the 

second smallest of 1: 2: :, , ,  k k k kZ Z Z⋅⋅ ⋅  and ( ):k k
Z  represents the

thk smallest of{ }1: 2: :,  ,  ,  k k k kZ Z Z⋅ ⋅ ⋅ . Then, the PDF of ( ):i k
Z , 

1 i k≤ ≤  is given by 

( ) ( ) ( ) ( ) ( )1

:  1 .
beta  1

1

,

i k i

i kg g z G z G z
i k i

z
− −

=    −    − +
 

So, the PDF of smallest order statistic is 

( ) ( ) ( ) ( )2
2 1 1
111  

1: 11  2 .
z z

k

z z e
kg kz z z e e

γβ θγβ θγγβ θ
++− − 

= +  
 
 

  

Also, the PDF of largest order statistic is 

( ) ( ) ( ) ( ) ( )2 2
+ +2+   

:

1

2 1 .
z z z z
k k k k

kkz z e
k

k

e
k kkg z k z z e e e

γ γβ θ β θγβ θγγβ θ−1 − −
−

 
= + − 

 
 

 

9. Applications 

In this section, two real life application are presented. The 

result of the goodness of fit of the suggested model is 

compared with three other well-known competing lifetime 

models. The investigative tools such as Akaike’s Information 



 International Journal of Data Science and Analysis 2017; 3(3): 18-23 22 

 

Criterion (AIC), Hannan-Quinn information criterion (HQIC), 

Cramer-von-Misses (CM) test statistics, Anderson–Darling 

(AD) test statistic, Consistent Akaike’s Information Criterion 

(CAIC), Bayesian information criterion (BIC), Kolmogorov–

Smirnov (K-S) test statistic and log likelihood ( )2 .,l z−  are 

considered. On the basis these measures, it is showed that the 

new model provides greater flexibility.  

9.1. Example 1 

The first data set obtained from Tahir et al. [18], denotes the 

failure times of 84 Aircraft Windshield. The failure times are 

as: 0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 

0.309, 1.899, 2.610, 3.478, 0.557, 1.911, 2.625, 3.578, 0.943, 

1.912, 2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124, 1.981, 

2.661, 3.779,1.248, 2.010, 2.688, 3.924, 1.281, 2.038, 2.82,3, 

4.035, 1.281, 2.085, 2.890, 4.121, 1.303, 2.089, 2.902, 4.167, 

1.432, 2.097, 2.934, 4.240, 1.480, 2.135, 2.962, 4.255, 1.505, 

2.154, 2.964, 4.278, 1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 

3.103, 4.376, 1.615, 2.223, 3.114, 4.449, 1.619, 2.224, 3.117, 

4.485, 1.652, 2.229, 3.166, 4.570, 1.652, 2.300, 3.344, 4.602, 

1.757, 2.324, 3.376 and 4.663. The final results, after applying 

the proposed distribution along with the competing models are 

provided in example 1, are summarized in table 1 & 2. 

Table 1. Goodness of fit results for NEx-FW, FWEx, IFWEx and MW. 

Dist. Max. Likelihood Estimates AD CM KS 2− logl   

NEx-FW γ̂ =0.115, β̂ =1.400, θ̂ =1.959 1.976 0.339 0.117 134.682 

FWEx β̂ = 0.307, θ̂ = 1.396 5.575 0.897 0.320 175.828 

IFWEx β̂ =0.0643, θ̂ =0.498 1.820 0.225 0.4857 187.242 

MW β̂ =2.798, σ̂ =0.044, α̂ =1.0260 0.5267 0.0567 0.666 275.07 

Table 2. Goodness of fit results for NEx-FW, FWEx, IFWEx and MW. 

Dist. AIC BIC CAIC HQIC 

NEx-FW 275.36 282.69 275.66 278.312 

FWEx 355.655 360.5412 355.802 357.620 

IFWEx 378.48 383.371 378.632 380.450 

MW 556.155 563.483 556.451 559.1026 

9.2. Example 2 

The second data set denotes the failure times of a sample of 30 devices taken from Khan and Jan [13]. The times are 2.75, 

0.13, 1.47, 0.23, 1.81, 0.30, 0.65, 0.10, 3.00, 1.73, 1.06, 3.00, 3.00, 2.12, 3.00, 3.00, 3.00, 0.02, 2.61, 2.93, 0.88, 2.47, 0.28, 

1.43, 3.00, 0.23, 3.00, 0.80, 2.45 and 2.66. The final goodness of fit result of the proposed model along with the competing 

models, are summarized in table 3 & 4. 

Table 3. Goodness of fit results for NEx-FW, FWEx, IFWEx and MW. 

Dist. Max. Likelihood Estimates AD CM KS 2− logl  

NEx-FW γ̂ =0.301, β̂ =1.400, θ̂ =0.196 1.02 0.14 0.163    35.11 

FWEx β̂ =0.3283, θ̂ =0.1610 2.060 0.326 0.3937    53.6561 

IFWEx β̂ = 0.029, θ̂ =0.621 1.600 0.242 0.2907    187.242 

MW β̂ =4.797, θ̂ =0.0082, α̂ =1.24672 1.3077 0.200 0.4727    75.951 

Table 4. Goodness of fit results for NEx-FW, FWEx, IFWEx and MW. 

Dist. AIC BIC CAIC HQIC 

NEx-FW 76.22 80.42 77.14 77.56 

FWEx 111.3122 114.114 111.756 112.208 

IFWEx 106.341 109.144 106.786 107.2381 

MW 157.90 162.106 158.826 159.247 

 

10. Conclusion 

In this paper, a new lifetime distribution entitled New 

Extended Flexible Weibull Distribution is introduced by 

taking into account a linear system of the two logarithms of 

cumulative hazard functions. The suggested model offers 

greater distribution flexibility and is able to model lifetime 

data with bathtub shaped failure rates. A concise explanation 

of the mathematical properties of the proposed model, with 

estimation of parameters using maximum likelihood 

procedure are discussed. The proposed modal is illustrated by 

means of analyzing two real data sets, and the goodness fit of 

the proposed model is compared with that of three other 

existing lifetime distributions. Analyzing these two data sets, 

it is observed that the new model provides best fit than the 
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competitive models. It is hoped that the New Extended 

Flexible Weibull distribution will serve as one of the most 

useful lifetime model and will attract a wide range of 

practical applications in the field of bio-medical and 

reliability engineering. 
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